Title: | Population (and Individual) Optimal Experimental Design |
---|---|
Description: | Optimal experimental designs for both population and individual studies based on nonlinear mixed-effect models. Often this is based on a computation of the Fisher Information Matrix. This package was developed for pharmacometric problems, and examples and predefined models are available for these types of systems. The methods are described in Nyberg et al. (2012) <doi:10.1016/j.cmpb.2012.05.005>, and Foracchia et al. (2004) <doi:10.1016/S0169-2607(03)00073-7>. |
Authors: | Andrew C. Hooker [aut, cre, trl, cph] , Marco Foracchia [aut] (O-Matrix version), Eric Stroemberg [ctb] (MATLAB version), Martin Fink [ctb] (Streamlining code, added functionality, vignettes), Giulia Lestini [ctb] (Streamlining code, added functionality, vignettes), Sebastian Ueckert [aut] (MATLAB version, <https://orcid.org/0000-0002-3712-0255>), Joakim Nyberg [aut] (MATLAB version) |
Maintainer: | Andrew C. Hooker <[email protected]> |
License: | LGPL (>= 3) |
Version: | 0.7.0 |
Built: | 2024-11-07 05:45:32 UTC |
Source: | https://github.com/andrewhooker/poped |
The function performs a grid search sequentially along design variables. The grid is defined by ls_step_size.
a_line_search( poped.db, out_file = "", bED = FALSE, diff = 0, fmf_initial = 0, dmf_initial = 0, opt_xt = poped.db$settings$optsw[2], opt_a = poped.db$settings$optsw[4], opt_x = poped.db$settings$optsw[3], opt_samps = poped.db$settings$optsw[1], opt_inds = poped.db$settings$optsw[5], ls_step_size = poped.db$settings$ls_step_size )
a_line_search( poped.db, out_file = "", bED = FALSE, diff = 0, fmf_initial = 0, dmf_initial = 0, opt_xt = poped.db$settings$optsw[2], opt_a = poped.db$settings$optsw[4], opt_x = poped.db$settings$optsw[3], opt_samps = poped.db$settings$optsw[1], opt_inds = poped.db$settings$optsw[5], ls_step_size = poped.db$settings$ls_step_size )
poped.db |
A PopED database. |
out_file |
The output file to write to. |
bED |
If the algorithm should use E-family methods. Logical. |
diff |
The OFV difference that is deemed significant for changing a design. If,
by changing a design variable the difference between the new and old OFV is less than |
fmf_initial |
The initial value of the FIM. If |
dmf_initial |
The initial value of the objective function value (OFV).
If |
opt_xt |
Should the sample times be optimized? |
opt_a |
Should the continuous design variables be optimized? |
opt_x |
Should the discrete design variables be optimized? |
opt_samps |
Are the number of sample times per group being optimized? |
opt_inds |
Are the number of individuals per group being optimized? |
ls_step_size |
Number of grid points in the line search. |
A list containing:
fmf |
The FIM. |
dmf |
The final value of the objective function value. |
best_changed |
If the algorithm has found a better design than the starting design. |
xt |
A matrix of sample times. Each row is a vector of sample times for a group. |
x |
A matrix for the discrete design variables. Each row is a group. |
a |
A matrix of covariates. Each row is a group. |
poped.db |
A PopED database. |
Other Optimize:
Doptim()
,
LEDoptim()
,
RS_opt()
,
bfgsb_min()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### # very sparse grid to evaluate (4 points for each design valiable) output <- a_line_search(poped.db, opt_xt=TRUE, opt_a=TRUE, ls_step_size=4) ## Not run: # longer run time output <- a_line_search(poped.db,opt_xt=TRUE) # output to a text file output <- a_line_search(poped.db,opt_xt=TRUE,out_file="tmp.txt") ## End(Not run)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### # very sparse grid to evaluate (4 points for each design valiable) output <- a_line_search(poped.db, opt_xt=TRUE, opt_a=TRUE, ls_step_size=4) ## Not run: # longer run time output <- a_line_search(poped.db,opt_xt=TRUE) # output to a text file output <- a_line_search(poped.db,opt_xt=TRUE,out_file="tmp.txt") ## End(Not run)
Build PopED parameter function from a model function
build_sfg( model = "ff.PK.1.comp.oral.sd.CL", covariates = c("dose", "tau"), par_names = NULL, etas = "exp", no_etas = c("F", "Favail"), env = parent.frame() )
build_sfg( model = "ff.PK.1.comp.oral.sd.CL", covariates = c("dose", "tau"), par_names = NULL, etas = "exp", no_etas = c("F", "Favail"), env = parent.frame() )
model |
A string of text describing the model function name |
covariates |
A list of covariate names to be filtered out of the model |
par_names |
A list of parameter names in the model file. If not supplied then all undefined variables in the model file are extracted and the covariate names are filtered out of that list. |
etas |
Can be "exp", "prop", "add" or "none". Either one value for all parameters or a list defining the model per parameter. |
no_etas |
Parameters that should not have etas associated with them. |
env |
The environment to create the function in. |
A parameter model function to be used as input to PopED calculations.
build_sfg(model="ff.PK.1.comp.oral.md.CL") etas <- c(Favail="exp",KA="exp",V="add",CL="exp") build_sfg(model="ff.PK.1.comp.oral.md.CL",etas = etas)
build_sfg(model="ff.PK.1.comp.oral.md.CL") etas <- c(Favail="exp",KA="exp",V="add",CL="exp") build_sfg(model="ff.PK.1.comp.oral.md.CL",etas = etas)
This function computes the expectation of the FIM and OFV(FIM) for either point values of parameter estimates or parameter distributions given the model, parameters, distributions of parameter uncertainty, design and methods defined in the PopED database.
calc_ofv_and_fim( poped.db, ofv = 0, fim = 0, d_switch = poped.db$settings$d_switch, bpopdescr = poped.db$parameters$bpop, ddescr = poped.db$parameters$d, bpop = bpopdescr[, 2, drop = F], d = getfulld(ddescr[, 2, drop = F], poped.db$parameters$covd), docc_full = getfulld(poped.db$parameters$docc[, 2, drop = F], poped.db$parameters$covdocc), model_switch = poped.db$design$model_switch, ni = poped.db$design$ni, xt = poped.db$design$xt, x = poped.db$design$x, a = poped.db$design$a, fim.calc.type = poped.db$settings$iFIMCalculationType, use_laplace = poped.db$settings$iEDCalculationType, laplace.fim = FALSE, ofv_fun = poped.db$settings$ofv_fun, evaluate_fim = TRUE, ... )
calc_ofv_and_fim( poped.db, ofv = 0, fim = 0, d_switch = poped.db$settings$d_switch, bpopdescr = poped.db$parameters$bpop, ddescr = poped.db$parameters$d, bpop = bpopdescr[, 2, drop = F], d = getfulld(ddescr[, 2, drop = F], poped.db$parameters$covd), docc_full = getfulld(poped.db$parameters$docc[, 2, drop = F], poped.db$parameters$covdocc), model_switch = poped.db$design$model_switch, ni = poped.db$design$ni, xt = poped.db$design$xt, x = poped.db$design$x, a = poped.db$design$a, fim.calc.type = poped.db$settings$iFIMCalculationType, use_laplace = poped.db$settings$iEDCalculationType, laplace.fim = FALSE, ofv_fun = poped.db$settings$ofv_fun, evaluate_fim = TRUE, ... )
poped.db |
A PopED database. |
ofv |
The current ofv. If other than zero then this value is simply returned unchanged. |
fim |
The current FIM. If other than zero then this value is simply returned unchanged. |
d_switch |
D-family design (1) or ED-family design (0) (with or without parameter uncertainty) |
bpopdescr |
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
|
ddescr |
Matrix defining the diagonals of the IIV (same logic as for
the |
bpop |
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
Can also just supply the parameter values as a vector |
d |
Matrix defining the diagonals of the IIV (same logic as for the fixed effects
matrix bpop to define uncertainty). One can also just supply the parameter values as a |
docc_full |
A between occasion variability matrix. |
model_switch |
A matrix that is the same size as xt, specifying which model each sample belongs to. |
ni |
A vector of the number of samples in each group. |
xt |
A matrix of sample times. Each row is a vector of sample times for a group. |
x |
A matrix for the discrete design variables. Each row is a group. |
a |
A matrix of covariates. Each row is a group. |
fim.calc.type |
The method used for calculating the FIM. Potential values:
|
use_laplace |
Should the Laplace method be used in calculating the expectation of the OFV? |
laplace.fim |
Should an E(FIM) be calculated when computing the Laplace approximated E(OFV). Typically the FIM does not need to be computed and, if desired, this calculation is done using the standard MC integration technique, so can be slow. |
ofv_fun |
User defined function used to compute the objective function. The function must have a poped database object as its first argument and have "..." in its argument list. Can be referenced as a function or as a file name where the function defined in the file has the same name as the file. e.g. "cost.txt" has a function named "cost" in it. |
evaluate_fim |
Should the FIM be calculated? |
... |
Other arguments passed to the function. |
A list containing the FIM and OFV(FIM) or the E(FIM) and E(OFV(FIM)) according to the function arguments.
Other FIM:
LinMatrixH()
,
LinMatrixLH()
,
LinMatrixL_occ()
,
ed_laplace_ofv()
,
ed_mftot()
,
efficiency()
,
evaluate.e.ofv.fim()
,
evaluate.fim()
,
gradf_eps()
,
mf3()
,
mf7()
,
mftot()
,
ofv_criterion()
,
ofv_fim()
Other E-family:
ed_laplace_ofv()
,
ed_mftot()
,
evaluate.e.ofv.fim()
Other evaluate_FIM:
evaluate.e.ofv.fim()
,
evaluate.fim()
,
ofv_fim()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samoples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) ############# END ################### ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### calc_ofv_and_fim(poped.db) ## Not run: calc_ofv_and_fim(poped.db,d_switch=0) calc_ofv_and_fim(poped.db,d_switch=0,use_laplace=TRUE) calc_ofv_and_fim(poped.db,d_switch=0,use_laplace=TRUE,laplace.fim=TRUE) ## End(Not run)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samoples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) ############# END ################### ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### calc_ofv_and_fim(poped.db) ## Not run: calc_ofv_and_fim(poped.db,d_switch=0) calc_ofv_and_fim(poped.db,d_switch=0,use_laplace=TRUE) calc_ofv_and_fim(poped.db,d_switch=0,use_laplace=TRUE,laplace.fim=TRUE) ## End(Not run)
Create a cell array as in MATLAB.
cell(...)
cell(...)
... |
Dimensions for the cell array. |
A list of empty lists.
This is a modified version of the same function in the matlab R-package.
Other MATLAB:
diag_matlab()
,
feval()
,
fileparts()
,
isempty()
,
ones()
,
rand()
,
randn()
,
size()
,
tic()
,
toc()
,
zeros()
cell(3) cell(2,3) ## define possible values of 2 categorical design variable x.space <- cell(1,2) x.space[1,1] <- list(seq(10,100,10)) x.space[1,2] <- list(seq(10,300,10)) x.space x.space[1,1] x.space[1,2]
cell(3) cell(2,3) ## define possible values of 2 categorical design variable x.space <- cell(1,2) x.space[1,1] <- list(seq(10,100,10)) x.space[1,2] <- list(seq(10,300,10)) x.space x.space[1,1] x.space[1,2]
Create design variables to fully describe a design. If variables are supplied then these variables are checked for consistency and, if possible, changed to sizes that make sense if there are inconsistencies. Returns a list of matricies compatible with PopED.
create_design( xt, groupsize, m = NULL, x = NULL, a = NULL, ni = NULL, model_switch = NULL )
create_design( xt, groupsize, m = NULL, x = NULL, a = NULL, ni = NULL, model_switch = NULL )
xt |
Matrix defining the sampling schedule. Each row is a group. |
groupsize |
Vector defining the size of the different groups (number of individuals in each group). |
m |
A number defining the number of groups. Computed from xt if not defined. |
x |
A matrix defining the discrete design variables for the model Each row is a group. |
a |
Matrix defining the continuous design variables. Each row is a group. |
ni |
Vector defining the number of samples for each group, computed as all elements of xt for each group by default. |
model_switch |
Matrix defining which response a certain sampling time belongs to. Defaults to one for all elements of xt. |
If a value (or a vector/list of values) is supplied that corresponds to only one group and the design has multiple groups then all groups will have the same value(s). If a matrix is expected then a list of lists can be supplied instead, each list corresponding to a group.
Other poped_input:
convert_variables()
,
create.poped.database()
,
create_design_space()
,
downsizing_general_design()
,
poped.choose()
library(PopED) xt1 <- list(c(1,2,3),c(1,2,3,4)) xt4 <- list(c(1,2,3,4,5),c(1,2,3,4)) xt2 <- rbind(c(1,2,3,4),c(1,2,3,4)) xt3 <- c(1,2,3,4) design_1 <- create_design(xt=xt1,groupsize=20) design_2 <- create_design(xt=xt4,groupsize=20) design_3 <- create_design(xt=xt2,groupsize=20) design_4 <- create_design(xt=xt3,groupsize=20) design_5 <- create_design(xt=xt3,groupsize=20,m=3) design_6 <- create_design(xt=xt1,groupsize=20,model_switch=ones(2,4)) design_7 <-create_design(xt=xt1,groupsize=20,a=c(2,3,4)) design_8 <-create_design(xt=xt1,groupsize=20,a=rbind(c(2,3,4),c(4,5,6))) design_9 <-create_design(xt=xt1,groupsize=20,a=list(c(2,3,4,6),c(4,5,6))) design_10 <-create_design(xt=xt1,groupsize=20,a=list(c(2,3,4),c(4,5,6))) design_11 <-create_design(xt=c(0,1,2,4,6,8,24), groupsize=50, a=c(WT=70,DOSE=1000)) design_12 <-create_design(xt=c(0,1,2,4,6,8,24), groupsize=50, a=c(WT=70,DOSE=1000),m=2) design_13 <-create_design(xt=c(0,1,2,4,6,8,24), groupsize=50, a=list(c(WT=70,DOSE=1000),c(DOSE=90,WT=200,AGE=45)),m=2) design_14 <-create_design(xt=c(0,1,2,4,6,8,24), groupsize=50, a=list(list(WT=70,DOSE=1000),list(DOSE=90,WT=200,AGE=45)),m=2) design_15 <-create_design(xt=xt4, groupsize=c(50,20), a=rbind(c("DOSE"=2,"WT"=3,"AGE"=4), c(4,5,6)))
library(PopED) xt1 <- list(c(1,2,3),c(1,2,3,4)) xt4 <- list(c(1,2,3,4,5),c(1,2,3,4)) xt2 <- rbind(c(1,2,3,4),c(1,2,3,4)) xt3 <- c(1,2,3,4) design_1 <- create_design(xt=xt1,groupsize=20) design_2 <- create_design(xt=xt4,groupsize=20) design_3 <- create_design(xt=xt2,groupsize=20) design_4 <- create_design(xt=xt3,groupsize=20) design_5 <- create_design(xt=xt3,groupsize=20,m=3) design_6 <- create_design(xt=xt1,groupsize=20,model_switch=ones(2,4)) design_7 <-create_design(xt=xt1,groupsize=20,a=c(2,3,4)) design_8 <-create_design(xt=xt1,groupsize=20,a=rbind(c(2,3,4),c(4,5,6))) design_9 <-create_design(xt=xt1,groupsize=20,a=list(c(2,3,4,6),c(4,5,6))) design_10 <-create_design(xt=xt1,groupsize=20,a=list(c(2,3,4),c(4,5,6))) design_11 <-create_design(xt=c(0,1,2,4,6,8,24), groupsize=50, a=c(WT=70,DOSE=1000)) design_12 <-create_design(xt=c(0,1,2,4,6,8,24), groupsize=50, a=c(WT=70,DOSE=1000),m=2) design_13 <-create_design(xt=c(0,1,2,4,6,8,24), groupsize=50, a=list(c(WT=70,DOSE=1000),c(DOSE=90,WT=200,AGE=45)),m=2) design_14 <-create_design(xt=c(0,1,2,4,6,8,24), groupsize=50, a=list(list(WT=70,DOSE=1000),list(DOSE=90,WT=200,AGE=45)),m=2) design_15 <-create_design(xt=xt4, groupsize=c(50,20), a=rbind(c("DOSE"=2,"WT"=3,"AGE"=4), c(4,5,6)))
create_design_space
takes an initial design and arguments for a design space and
creates a design and design space for design optimization.
Checks the sizes of supplied design space variables and
changes them to sizes that make sense if there are inconsistencies.
Function arguments can use shorthand notation (single values, vectors, lists of vectors and
list of list) or matricies.
Returns a list of matricies compatible with PopED.
create_design_space( design, maxni = NULL, minni = NULL, maxtotni = NULL, mintotni = NULL, maxgroupsize = NULL, mingroupsize = NULL, maxtotgroupsize = NULL, mintotgroupsize = NULL, maxxt = NULL, minxt = NULL, xt_space = NULL, maxa = NULL, mina = NULL, a_space = NULL, x_space = NULL, use_grouped_xt = FALSE, grouped_xt = NULL, use_grouped_a = FALSE, grouped_a = NULL, use_grouped_x = FALSE, grouped_x = NULL, our_zero = NULL )
create_design_space( design, maxni = NULL, minni = NULL, maxtotni = NULL, mintotni = NULL, maxgroupsize = NULL, mingroupsize = NULL, maxtotgroupsize = NULL, mintotgroupsize = NULL, maxxt = NULL, minxt = NULL, xt_space = NULL, maxa = NULL, mina = NULL, a_space = NULL, x_space = NULL, use_grouped_xt = FALSE, grouped_xt = NULL, use_grouped_a = FALSE, grouped_a = NULL, use_grouped_x = FALSE, grouped_x = NULL, our_zero = NULL )
design |
The output from a call to |
maxni |
Vector defining the maximum number of samples per group. |
minni |
Vector defining the minimum number of samples per group. |
maxtotni |
Number defining the maximum number of samples allowed in the experiment. |
mintotni |
Number defining the minimum number of samples allowed in the experiment. |
maxgroupsize |
Vector defining the maximum size of the different groups (maximum number of individuals in each group) |
mingroupsize |
Vector defining the minimum size of the different groups (minimum num individuals in each group) |
maxtotgroupsize |
The total maximal groupsize over all groups |
mintotgroupsize |
The total minimal groupsize over all groups |
maxxt |
Matrix or single value defining the maximum value for each xt sample. If a single value is supplied then all xt values are given the same maximum value. |
minxt |
Matrix or single value defining the minimum value for each xt sample. If a single value is supplied then all xt values are given the same minimum value |
xt_space |
Cell array |
maxa |
Vector defining the maximum value for each covariate. IF a single value is supplied then all a values are given the same maximum value |
mina |
Vector defining the minimum value for each covariate. IF a single value is supplied then all a values are given the same minimum value |
a_space |
Cell array |
x_space |
Cell array |
use_grouped_xt |
Group sampling times between groups so that each group has the same values ( |
grouped_xt |
Matrix defining the grouping of sample points. Matching integers mean that the points are matched.
Allows for finer control than |
use_grouped_a |
Group continuous design variables between groups so that each group has the same values ( |
grouped_a |
Matrix defining the grouping of continuous design variables. Matching integers mean that the values are matched.
Allows for finer control than |
use_grouped_x |
Group discrete design variables between groups so that each group has the same values ( |
grouped_x |
Matrix defining the grouping of discrete design variables. Matching integers mean that the values are matched.
Allows for finer control than |
our_zero |
Value to interpret as zero in design. |
If a value (or a vector or a list of values) is supplied that corresponds to only one group and the design has multiple groups then all groups will have the same value(s). If a matrix is expected then a list of lists can be supplied instead, each list corresponding to a group.
Other poped_input:
convert_variables()
,
create.poped.database()
,
create_design()
,
downsizing_general_design()
,
poped.choose()
library(PopED) design_1 <- create_design(xt=list(c(1,2,3,4,5), c(1,2,3,4)), groupsize=c(50,20), a=list(c(WT=70,DOSE=1000), c(DOSE=1000,WT=35))) ds_1 <- create_design_space(design_1) ds_1_a <- create_design_space(design_1,our_zero = 1e-5) ds_2 <- create_design_space(design_1,maxni=10,maxxt=10,minxt=0) ds_3 <- create_design_space(design_1,maxni=10,mingroupsize=20,maxxt=10,minxt=0) ds_4 <- create_design_space(design_1,maxa=c(100,2000)) ds_5 <- create_design_space(design_1,mina=c(10,20)) design_2 <- create_design(xt=list(c(1,2,3,4,5), c(1,2,3,4)), groupsize=c(50,20), a=list(c(WT=70,DOSE=1000), c(WT=35,DOSE=1000)), x=list(c(SEX=1,DOSE_discrete=100), c(SEX=2,DOSE_discrete=200))) ds_6 <- create_design_space(design_2) ds_7 <- create_design_space(design_2, x_space=list(SEX=c(1,2), DOSE_discrete=seq(100,400,by=20))) ds_8 <- create_design_space(design_2, x_space=list(SEX=c(1,2), DOSE_discrete=seq(100,400,by=20)), grouped_xt=c(1,2,3,4,5)) ds_9 <- create_design_space(design_2, x_space=list(SEX=c(1,2), DOSE_discrete=seq(100,400,by=20)), use_grouped_xt=TRUE) design_3 <- create_design(xt=list(c(1,2,3,4,5), c(1,2,3,4)), groupsize=c(50,20), a=list(c(WT=35,DOSE=1000)), x=list(c(SEX=1,DOSE_discrete=100))) ds_10 <- create_design_space(design_3, x_space=list(SEX=c(1,2),DOSE_discrete=seq(100,400,by=20)), use_grouped_a=TRUE) ds_11 <- create_design_space(design_2, x_space=list(SEX=c(1,2),DOSE_discrete=seq(100,400,by=20)), grouped_a=list(c(1,2),c(3,2))) ds_12 <- create_design_space(design_3, x_space=list(SEX=c(1,2),DOSE_discrete=seq(100,400,by=20)), use_grouped_x=TRUE) ds_13 <- create_design_space(design_3, x_space=list(SEX=c(1,2),DOSE_discrete=seq(100,400,by=20)), grouped_x=list(c(1,2),c(3,2))) seq_1 <- 1:10 ds_14 <- create_design_space(design_1,maxxt=10,minxt=0, xt_space = list(seq_1,seq_1,seq_1,seq_1,seq_1)) ds_15 <- create_design_space(design_1,maxxt=10,minxt=0,xt_space = list(seq_1)) possible_values <- as.matrix(cbind(list(0:10),list(0:10),list(0:10),list(0:20),list(0:20))) xt_space <- as.matrix(rbind(possible_values,possible_values)) ds_16 <- create_design_space(design_1,maxxt=10,minxt=0,xt_space = xt_space) ds_17 <- create_design_space(design_1,a_space = list(1:100,seq(1000,100000,by=1000)))
library(PopED) design_1 <- create_design(xt=list(c(1,2,3,4,5), c(1,2,3,4)), groupsize=c(50,20), a=list(c(WT=70,DOSE=1000), c(DOSE=1000,WT=35))) ds_1 <- create_design_space(design_1) ds_1_a <- create_design_space(design_1,our_zero = 1e-5) ds_2 <- create_design_space(design_1,maxni=10,maxxt=10,minxt=0) ds_3 <- create_design_space(design_1,maxni=10,mingroupsize=20,maxxt=10,minxt=0) ds_4 <- create_design_space(design_1,maxa=c(100,2000)) ds_5 <- create_design_space(design_1,mina=c(10,20)) design_2 <- create_design(xt=list(c(1,2,3,4,5), c(1,2,3,4)), groupsize=c(50,20), a=list(c(WT=70,DOSE=1000), c(WT=35,DOSE=1000)), x=list(c(SEX=1,DOSE_discrete=100), c(SEX=2,DOSE_discrete=200))) ds_6 <- create_design_space(design_2) ds_7 <- create_design_space(design_2, x_space=list(SEX=c(1,2), DOSE_discrete=seq(100,400,by=20))) ds_8 <- create_design_space(design_2, x_space=list(SEX=c(1,2), DOSE_discrete=seq(100,400,by=20)), grouped_xt=c(1,2,3,4,5)) ds_9 <- create_design_space(design_2, x_space=list(SEX=c(1,2), DOSE_discrete=seq(100,400,by=20)), use_grouped_xt=TRUE) design_3 <- create_design(xt=list(c(1,2,3,4,5), c(1,2,3,4)), groupsize=c(50,20), a=list(c(WT=35,DOSE=1000)), x=list(c(SEX=1,DOSE_discrete=100))) ds_10 <- create_design_space(design_3, x_space=list(SEX=c(1,2),DOSE_discrete=seq(100,400,by=20)), use_grouped_a=TRUE) ds_11 <- create_design_space(design_2, x_space=list(SEX=c(1,2),DOSE_discrete=seq(100,400,by=20)), grouped_a=list(c(1,2),c(3,2))) ds_12 <- create_design_space(design_3, x_space=list(SEX=c(1,2),DOSE_discrete=seq(100,400,by=20)), use_grouped_x=TRUE) ds_13 <- create_design_space(design_3, x_space=list(SEX=c(1,2),DOSE_discrete=seq(100,400,by=20)), grouped_x=list(c(1,2),c(3,2))) seq_1 <- 1:10 ds_14 <- create_design_space(design_1,maxxt=10,minxt=0, xt_space = list(seq_1,seq_1,seq_1,seq_1,seq_1)) ds_15 <- create_design_space(design_1,maxxt=10,minxt=0,xt_space = list(seq_1)) possible_values <- as.matrix(cbind(list(0:10),list(0:10),list(0:10),list(0:20),list(0:20))) xt_space <- as.matrix(rbind(possible_values,possible_values)) ds_16 <- create_design_space(design_1,maxxt=10,minxt=0,xt_space = xt_space) ds_17 <- create_design_space(design_1,a_space = list(1:100,seq(1000,100000,by=1000)))
This function takes the input file (a previously created poped database) supplied by the user, or function arguments, and creates a database that can then be used to run all other PopED functions. The function supplies default values to elements of the database that are not specified in the input file or as function arguments. Default arguments are supplied in the Usage section (easiest to use a text search to find values you are interested in).
create.poped.database( popedInput = list(), ff_file = NULL, ff_fun = poped.choose(popedInput$model$ff_pointer, NULL), fg_file = NULL, fg_fun = poped.choose(popedInput$model$fg_pointer, NULL), fError_file = NULL, fError_fun = poped.choose(popedInput$model$ferror_pointer, NULL), optsw = poped.choose(popedInput$settings$optsw, cbind(0, 0, 0, 0, 0)), xt = poped.choose(popedInput$design[["xt"]], stop("'xt' needs to be defined")), m = poped.choose(popedInput$design[["m"]], NULL), x = poped.choose(popedInput$design[["x"]], NULL), nx = poped.choose(popedInput$design$nx, NULL), a = poped.choose(popedInput$design[["a"]], NULL), groupsize = poped.choose(popedInput$design$groupsize, stop("'groupsize' needs to be defined")), ni = poped.choose(popedInput$design$ni, NULL), model_switch = poped.choose(popedInput$design$model_switch, NULL), maxni = poped.choose(popedInput$design_space$maxni, NULL), minni = poped.choose(popedInput$design_space$minni, NULL), maxtotni = poped.choose(popedInput$design_space$maxtotni, NULL), mintotni = poped.choose(popedInput$design_space$mintotni, NULL), maxgroupsize = poped.choose(popedInput$design_space$maxgroupsize, NULL), mingroupsize = poped.choose(popedInput$design_space$mingroupsize, NULL), maxtotgroupsize = poped.choose(popedInput$design_space$maxtotgroupsize, NULL), mintotgroupsize = poped.choose(popedInput$design_space$mintotgroupsize, NULL), maxxt = poped.choose(popedInput$design_space$maxxt, NULL), minxt = poped.choose(popedInput$design_space$minxt, NULL), discrete_xt = poped.choose(popedInput$design_space$xt_space, NULL), discrete_x = poped.choose(popedInput$design_space$discrete_x, NULL), maxa = poped.choose(popedInput$design_space$maxa, NULL), mina = poped.choose(popedInput$design_space$mina, NULL), discrete_a = poped.choose(popedInput$design_space$a_space, NULL), bUseGrouped_xt = poped.choose(popedInput$design_space$bUseGrouped_xt, FALSE), G_xt = poped.choose(popedInput$design_space$G_xt, NULL), bUseGrouped_a = poped.choose(popedInput$design_space$bUseGrouped_a, FALSE), G_a = poped.choose(popedInput$design_space$G_a, NULL), bUseGrouped_x = poped.choose(popedInput$design_space$bUseGrouped_x, FALSE), G_x = poped.choose(popedInput$design_space[["G_x"]], NULL), iFIMCalculationType = poped.choose(popedInput$settings$iFIMCalculationType, 1), iApproximationMethod = poped.choose(popedInput$settings$iApproximationMethod, 0), iFOCENumInd = poped.choose(popedInput$settings$iFOCENumInd, 1000), prior_fim = poped.choose(popedInput$settings$prior_fim, matrix(0, 0, 1)), strAutoCorrelationFile = poped.choose(popedInput$model$auto_pointer, ""), d_switch = poped.choose(popedInput$settings$d_switch, 1), ofv_calc_type = poped.choose(popedInput$settings$ofv_calc_type, 4), ds_index = popedInput$parameters$ds_index, strEDPenaltyFile = poped.choose(popedInput$settings$strEDPenaltyFile, ""), ofv_fun = poped.choose(popedInput$settings$ofv_fun, NULL), iEDCalculationType = poped.choose(popedInput$settings$iEDCalculationType, 0), ED_samp_size = poped.choose(popedInput$settings$ED_samp_size, 45), bLHS = poped.choose(popedInput$settings$bLHS, 1), strUserDistributionFile = poped.choose(popedInput$model$user_distribution_pointer, ""), nbpop = popedInput$parameters$nbpop, NumRanEff = popedInput$parameters$NumRanEff, NumDocc = popedInput$parameters$NumDocc, NumOcc = popedInput$parameters$NumOcc, bpop = poped.choose(popedInput$parameters$bpop, stop("bpop must be defined")), d = poped.choose(popedInput$parameters$d, NULL), covd = popedInput$parameters$covd, sigma = popedInput$parameters$sigma, docc = poped.choose(popedInput$parameters$docc, matrix(0, 0, 3)), covdocc = poped.choose(popedInput$parameters$covdocc, zeros(1, length(docc[, 2, drop = F]) * (length(docc[, 2, drop = F]) - 1)/2)), notfixed_bpop = popedInput$parameters$notfixed_bpop, notfixed_d = popedInput$parameters$notfixed_d, notfixed_covd = popedInput$parameters$notfixed_covd, notfixed_docc = popedInput$parameters$notfixed_docc, notfixed_covdocc = poped.choose(popedInput$parameters$notfixed_covdocc, zeros(1, length(covdocc))), notfixed_sigma = poped.choose(popedInput$parameters$notfixed_sigma, t(rep(1, size(sigma, 2)))), notfixed_covsigma = poped.choose(popedInput$parameters$notfixed_covsigma, zeros(1, length(notfixed_sigma) * (length(notfixed_sigma) - 1)/2)), reorder_parameter_vectors = FALSE, bUseRandomSearch = poped.choose(popedInput$settings$bUseRandomSearch, TRUE), bUseStochasticGradient = poped.choose(popedInput$settings$bUseStochasticGradient, TRUE), bUseLineSearch = poped.choose(popedInput$settings$bUseLineSearch, TRUE), bUseExchangeAlgorithm = poped.choose(popedInput$settings$bUseExchangeAlgorithm, FALSE), bUseBFGSMinimizer = poped.choose(popedInput$settings$bUseBFGSMinimizer, FALSE), EACriteria = poped.choose(popedInput$settings$EACriteria, 1), strRunFile = poped.choose(popedInput$settings$run_file_pointer, ""), poped_version = poped.choose(popedInput$settings$poped_version, packageVersion("PopED")), modtit = poped.choose(popedInput$settings$modtit, "PopED model"), output_file = poped.choose(popedInput$settings$output_file, paste("PopED_output", "_summary", sep = "")), output_function_file = poped.choose(popedInput$settings$output_function_file, paste("PopED", "_output_", sep = "")), strIterationFileName = poped.choose(popedInput$settings$strIterationFileName, paste("PopED", "_current.R", sep = "")), user_data = poped.choose(popedInput$settings$user_data, cell(0, 0)), ourzero = poped.choose(popedInput$settings$ourzero, 1e-05), dSeed = poped.choose(popedInput$settings$dSeed, NULL), line_opta = poped.choose(popedInput$settings$line_opta, NULL), line_optx = poped.choose(popedInput$settings$line_optx, NULL), bShowGraphs = poped.choose(popedInput$settings$bShowGraphs, FALSE), use_logfile = poped.choose(popedInput$settings$use_logfile, FALSE), m1_switch = poped.choose(popedInput$settings$m1_switch, 1), m2_switch = poped.choose(popedInput$settings$m2_switch, 1), hle_switch = poped.choose(popedInput$settings$hle_switch, 1), gradff_switch = poped.choose(popedInput$settings$gradff_switch, 1), gradfg_switch = poped.choose(popedInput$settings$gradfg_switch, 1), grad_all_switch = poped.choose(popedInput$settings$grad_all_switch, 1), rsit_output = poped.choose(popedInput$settings$rsit_output, 5), sgit_output = poped.choose(popedInput$settings$sgit_output, 1), hm1 = poped.choose(popedInput$settings[["hm1"]], 1e-05), hlf = poped.choose(popedInput$settings[["hlf"]], 1e-05), hlg = poped.choose(popedInput$settings[["hlg"]], 1e-05), hm2 = poped.choose(popedInput$settings[["hm2"]], 1e-05), hgd = poped.choose(popedInput$settings[["hgd"]], 1e-05), hle = poped.choose(popedInput$settings[["hle"]], 1e-05), AbsTol = poped.choose(popedInput$settings$AbsTol, 1e-06), RelTol = poped.choose(popedInput$settings$RelTol, 1e-06), iDiffSolverMethod = poped.choose(popedInput$settings$iDiffSolverMethod, NULL), bUseMemorySolver = poped.choose(popedInput$settings$bUseMemorySolver, FALSE), rsit = poped.choose(popedInput$settings[["rsit"]], 300), sgit = poped.choose(popedInput$settings[["sgit"]], 150), intrsit = poped.choose(popedInput$settings$intrsit, 250), intsgit = poped.choose(popedInput$settings$intsgit, 50), maxrsnullit = poped.choose(popedInput$settings$maxrsnullit, 50), convergence_eps = poped.choose(popedInput$settings$convergence_eps, 1e-08), rslxt = poped.choose(popedInput$settings$rslxt, 10), rsla = poped.choose(popedInput$settings$rsla, 10), cfaxt = poped.choose(popedInput$settings$cfaxt, 0.001), cfaa = poped.choose(popedInput$settings$cfaa, 0.001), bGreedyGroupOpt = poped.choose(popedInput$settings$bGreedyGroupOpt, FALSE), EAStepSize = poped.choose(popedInput$settings$EAStepSize, 0.01), EANumPoints = poped.choose(popedInput$settings$EANumPoints, FALSE), EAConvergenceCriteria = poped.choose(popedInput$settings$EAConvergenceCriteria, 1e-20), bEANoReplicates = poped.choose(popedInput$settings$bEANoReplicates, FALSE), BFGSConvergenceCriteriaMinStep = NULL, BFGSProjectedGradientTol = poped.choose(popedInput$settings$BFGSProjectedGradientTol, 1e-04), BFGSTolerancef = poped.choose(popedInput$settings$BFGSTolerancef, 0.001), BFGSToleranceg = poped.choose(popedInput$settings$BFGSToleranceg, 0.9), BFGSTolerancex = poped.choose(popedInput$settings$BFGSTolerancex, 0.1), ED_diff_it = poped.choose(popedInput$settings$ED_diff_it, 30), ED_diff_percent = poped.choose(popedInput$settings$ED_diff_percent, 10), line_search_it = poped.choose(popedInput$settings$ls_step_size, 50), Doptim_iter = poped.choose(popedInput$settings$iNumSearchIterationsIfNotLineSearch, 1), iCompileOption = poped.choose(popedInput$settings$parallel$iCompileOption, -1), iUseParallelMethod = poped.choose(popedInput$settings$parallel$iUseParallelMethod, 1), MCC_Dep = NULL, strExecuteName = poped.choose(popedInput$settings$parallel$strExecuteName, "calc_fim.exe"), iNumProcesses = poped.choose(popedInput$settings$parallel$iNumProcesses, 2), iNumChunkDesignEvals = poped.choose(popedInput$settings$parallel$iNumChunkDesignEvals, -2), Mat_Out_Pre = poped.choose(popedInput$settings$parallel$strMatFileOutputPrefix, "parallel_output"), strExtraRunOptions = poped.choose(popedInput$settings$parallel$strExtraRunOptions, ""), dPollResultTime = poped.choose(popedInput$settings$parallel$dPollResultTime, 0.1), strFunctionInputName = poped.choose(popedInput$settings$parallel$strFunctionInputName, "function_input"), bParallelRS = poped.choose(popedInput$settings$parallel$bParallelRS, FALSE), bParallelSG = poped.choose(popedInput$settings$parallel$bParallelSG, FALSE), bParallelMFEA = poped.choose(popedInput$settings$parallel$bParallelMFEA, FALSE), bParallelLS = poped.choose(popedInput$settings$parallel$bParallelLS, FALSE) )
create.poped.database( popedInput = list(), ff_file = NULL, ff_fun = poped.choose(popedInput$model$ff_pointer, NULL), fg_file = NULL, fg_fun = poped.choose(popedInput$model$fg_pointer, NULL), fError_file = NULL, fError_fun = poped.choose(popedInput$model$ferror_pointer, NULL), optsw = poped.choose(popedInput$settings$optsw, cbind(0, 0, 0, 0, 0)), xt = poped.choose(popedInput$design[["xt"]], stop("'xt' needs to be defined")), m = poped.choose(popedInput$design[["m"]], NULL), x = poped.choose(popedInput$design[["x"]], NULL), nx = poped.choose(popedInput$design$nx, NULL), a = poped.choose(popedInput$design[["a"]], NULL), groupsize = poped.choose(popedInput$design$groupsize, stop("'groupsize' needs to be defined")), ni = poped.choose(popedInput$design$ni, NULL), model_switch = poped.choose(popedInput$design$model_switch, NULL), maxni = poped.choose(popedInput$design_space$maxni, NULL), minni = poped.choose(popedInput$design_space$minni, NULL), maxtotni = poped.choose(popedInput$design_space$maxtotni, NULL), mintotni = poped.choose(popedInput$design_space$mintotni, NULL), maxgroupsize = poped.choose(popedInput$design_space$maxgroupsize, NULL), mingroupsize = poped.choose(popedInput$design_space$mingroupsize, NULL), maxtotgroupsize = poped.choose(popedInput$design_space$maxtotgroupsize, NULL), mintotgroupsize = poped.choose(popedInput$design_space$mintotgroupsize, NULL), maxxt = poped.choose(popedInput$design_space$maxxt, NULL), minxt = poped.choose(popedInput$design_space$minxt, NULL), discrete_xt = poped.choose(popedInput$design_space$xt_space, NULL), discrete_x = poped.choose(popedInput$design_space$discrete_x, NULL), maxa = poped.choose(popedInput$design_space$maxa, NULL), mina = poped.choose(popedInput$design_space$mina, NULL), discrete_a = poped.choose(popedInput$design_space$a_space, NULL), bUseGrouped_xt = poped.choose(popedInput$design_space$bUseGrouped_xt, FALSE), G_xt = poped.choose(popedInput$design_space$G_xt, NULL), bUseGrouped_a = poped.choose(popedInput$design_space$bUseGrouped_a, FALSE), G_a = poped.choose(popedInput$design_space$G_a, NULL), bUseGrouped_x = poped.choose(popedInput$design_space$bUseGrouped_x, FALSE), G_x = poped.choose(popedInput$design_space[["G_x"]], NULL), iFIMCalculationType = poped.choose(popedInput$settings$iFIMCalculationType, 1), iApproximationMethod = poped.choose(popedInput$settings$iApproximationMethod, 0), iFOCENumInd = poped.choose(popedInput$settings$iFOCENumInd, 1000), prior_fim = poped.choose(popedInput$settings$prior_fim, matrix(0, 0, 1)), strAutoCorrelationFile = poped.choose(popedInput$model$auto_pointer, ""), d_switch = poped.choose(popedInput$settings$d_switch, 1), ofv_calc_type = poped.choose(popedInput$settings$ofv_calc_type, 4), ds_index = popedInput$parameters$ds_index, strEDPenaltyFile = poped.choose(popedInput$settings$strEDPenaltyFile, ""), ofv_fun = poped.choose(popedInput$settings$ofv_fun, NULL), iEDCalculationType = poped.choose(popedInput$settings$iEDCalculationType, 0), ED_samp_size = poped.choose(popedInput$settings$ED_samp_size, 45), bLHS = poped.choose(popedInput$settings$bLHS, 1), strUserDistributionFile = poped.choose(popedInput$model$user_distribution_pointer, ""), nbpop = popedInput$parameters$nbpop, NumRanEff = popedInput$parameters$NumRanEff, NumDocc = popedInput$parameters$NumDocc, NumOcc = popedInput$parameters$NumOcc, bpop = poped.choose(popedInput$parameters$bpop, stop("bpop must be defined")), d = poped.choose(popedInput$parameters$d, NULL), covd = popedInput$parameters$covd, sigma = popedInput$parameters$sigma, docc = poped.choose(popedInput$parameters$docc, matrix(0, 0, 3)), covdocc = poped.choose(popedInput$parameters$covdocc, zeros(1, length(docc[, 2, drop = F]) * (length(docc[, 2, drop = F]) - 1)/2)), notfixed_bpop = popedInput$parameters$notfixed_bpop, notfixed_d = popedInput$parameters$notfixed_d, notfixed_covd = popedInput$parameters$notfixed_covd, notfixed_docc = popedInput$parameters$notfixed_docc, notfixed_covdocc = poped.choose(popedInput$parameters$notfixed_covdocc, zeros(1, length(covdocc))), notfixed_sigma = poped.choose(popedInput$parameters$notfixed_sigma, t(rep(1, size(sigma, 2)))), notfixed_covsigma = poped.choose(popedInput$parameters$notfixed_covsigma, zeros(1, length(notfixed_sigma) * (length(notfixed_sigma) - 1)/2)), reorder_parameter_vectors = FALSE, bUseRandomSearch = poped.choose(popedInput$settings$bUseRandomSearch, TRUE), bUseStochasticGradient = poped.choose(popedInput$settings$bUseStochasticGradient, TRUE), bUseLineSearch = poped.choose(popedInput$settings$bUseLineSearch, TRUE), bUseExchangeAlgorithm = poped.choose(popedInput$settings$bUseExchangeAlgorithm, FALSE), bUseBFGSMinimizer = poped.choose(popedInput$settings$bUseBFGSMinimizer, FALSE), EACriteria = poped.choose(popedInput$settings$EACriteria, 1), strRunFile = poped.choose(popedInput$settings$run_file_pointer, ""), poped_version = poped.choose(popedInput$settings$poped_version, packageVersion("PopED")), modtit = poped.choose(popedInput$settings$modtit, "PopED model"), output_file = poped.choose(popedInput$settings$output_file, paste("PopED_output", "_summary", sep = "")), output_function_file = poped.choose(popedInput$settings$output_function_file, paste("PopED", "_output_", sep = "")), strIterationFileName = poped.choose(popedInput$settings$strIterationFileName, paste("PopED", "_current.R", sep = "")), user_data = poped.choose(popedInput$settings$user_data, cell(0, 0)), ourzero = poped.choose(popedInput$settings$ourzero, 1e-05), dSeed = poped.choose(popedInput$settings$dSeed, NULL), line_opta = poped.choose(popedInput$settings$line_opta, NULL), line_optx = poped.choose(popedInput$settings$line_optx, NULL), bShowGraphs = poped.choose(popedInput$settings$bShowGraphs, FALSE), use_logfile = poped.choose(popedInput$settings$use_logfile, FALSE), m1_switch = poped.choose(popedInput$settings$m1_switch, 1), m2_switch = poped.choose(popedInput$settings$m2_switch, 1), hle_switch = poped.choose(popedInput$settings$hle_switch, 1), gradff_switch = poped.choose(popedInput$settings$gradff_switch, 1), gradfg_switch = poped.choose(popedInput$settings$gradfg_switch, 1), grad_all_switch = poped.choose(popedInput$settings$grad_all_switch, 1), rsit_output = poped.choose(popedInput$settings$rsit_output, 5), sgit_output = poped.choose(popedInput$settings$sgit_output, 1), hm1 = poped.choose(popedInput$settings[["hm1"]], 1e-05), hlf = poped.choose(popedInput$settings[["hlf"]], 1e-05), hlg = poped.choose(popedInput$settings[["hlg"]], 1e-05), hm2 = poped.choose(popedInput$settings[["hm2"]], 1e-05), hgd = poped.choose(popedInput$settings[["hgd"]], 1e-05), hle = poped.choose(popedInput$settings[["hle"]], 1e-05), AbsTol = poped.choose(popedInput$settings$AbsTol, 1e-06), RelTol = poped.choose(popedInput$settings$RelTol, 1e-06), iDiffSolverMethod = poped.choose(popedInput$settings$iDiffSolverMethod, NULL), bUseMemorySolver = poped.choose(popedInput$settings$bUseMemorySolver, FALSE), rsit = poped.choose(popedInput$settings[["rsit"]], 300), sgit = poped.choose(popedInput$settings[["sgit"]], 150), intrsit = poped.choose(popedInput$settings$intrsit, 250), intsgit = poped.choose(popedInput$settings$intsgit, 50), maxrsnullit = poped.choose(popedInput$settings$maxrsnullit, 50), convergence_eps = poped.choose(popedInput$settings$convergence_eps, 1e-08), rslxt = poped.choose(popedInput$settings$rslxt, 10), rsla = poped.choose(popedInput$settings$rsla, 10), cfaxt = poped.choose(popedInput$settings$cfaxt, 0.001), cfaa = poped.choose(popedInput$settings$cfaa, 0.001), bGreedyGroupOpt = poped.choose(popedInput$settings$bGreedyGroupOpt, FALSE), EAStepSize = poped.choose(popedInput$settings$EAStepSize, 0.01), EANumPoints = poped.choose(popedInput$settings$EANumPoints, FALSE), EAConvergenceCriteria = poped.choose(popedInput$settings$EAConvergenceCriteria, 1e-20), bEANoReplicates = poped.choose(popedInput$settings$bEANoReplicates, FALSE), BFGSConvergenceCriteriaMinStep = NULL, BFGSProjectedGradientTol = poped.choose(popedInput$settings$BFGSProjectedGradientTol, 1e-04), BFGSTolerancef = poped.choose(popedInput$settings$BFGSTolerancef, 0.001), BFGSToleranceg = poped.choose(popedInput$settings$BFGSToleranceg, 0.9), BFGSTolerancex = poped.choose(popedInput$settings$BFGSTolerancex, 0.1), ED_diff_it = poped.choose(popedInput$settings$ED_diff_it, 30), ED_diff_percent = poped.choose(popedInput$settings$ED_diff_percent, 10), line_search_it = poped.choose(popedInput$settings$ls_step_size, 50), Doptim_iter = poped.choose(popedInput$settings$iNumSearchIterationsIfNotLineSearch, 1), iCompileOption = poped.choose(popedInput$settings$parallel$iCompileOption, -1), iUseParallelMethod = poped.choose(popedInput$settings$parallel$iUseParallelMethod, 1), MCC_Dep = NULL, strExecuteName = poped.choose(popedInput$settings$parallel$strExecuteName, "calc_fim.exe"), iNumProcesses = poped.choose(popedInput$settings$parallel$iNumProcesses, 2), iNumChunkDesignEvals = poped.choose(popedInput$settings$parallel$iNumChunkDesignEvals, -2), Mat_Out_Pre = poped.choose(popedInput$settings$parallel$strMatFileOutputPrefix, "parallel_output"), strExtraRunOptions = poped.choose(popedInput$settings$parallel$strExtraRunOptions, ""), dPollResultTime = poped.choose(popedInput$settings$parallel$dPollResultTime, 0.1), strFunctionInputName = poped.choose(popedInput$settings$parallel$strFunctionInputName, "function_input"), bParallelRS = poped.choose(popedInput$settings$parallel$bParallelRS, FALSE), bParallelSG = poped.choose(popedInput$settings$parallel$bParallelSG, FALSE), bParallelMFEA = poped.choose(popedInput$settings$parallel$bParallelMFEA, FALSE), bParallelLS = poped.choose(popedInput$settings$parallel$bParallelLS, FALSE) )
popedInput |
A PopED database file or an empty list |
ff_file |
A string giving the function name or filename and path of the structural model.
The filename and the function name must be the same if giving a filename.
e.g. |
ff_fun |
Function describing the structural model. e.g. |
fg_file |
A string giving the function name or filename and path of the
parameter model.
The filename and the function name must be the same if giving a filename.
e.g. |
fg_fun |
Function describing the parameter model. e.g. |
fError_file |
A string giving the function name or filename and path of the
residual error model.
The filename and the function name must be the same if giving a filename.
e.g. |
fError_fun |
Function describing the residual error model. e.g. |
optsw |
Row vector of optimization tasks (1=TRUE,0=FALSE) in the following order: (Samples per subject, Sampling schedule, Discrete design variable, Continuous design variable, Number of id per group). All elements set to zero => only calculate the FIM with current design |
xt |
Matrix defining the initial sampling schedule.
Each row is a group/individual.
If only one vector is supplied, e.g. |
m |
Number of groups in the study. Each individual in a group will have the same design. |
x |
A matrix defining the initial discrete values for the model Each row is a group/individual. |
nx |
Number of discrete design variables. |
a |
Matrix defining the initial continuous covariate values. n_rows=number of groups, n_cols=number of covariates. If the number of rows is one and the number of groups > 1 then all groups are assigned the same values. |
groupsize |
Vector defining the size of the different groups (num individuals in each group). If only one number then the number will be the same in every group. |
ni |
Vector defining the number of samples for each group. |
model_switch |
Matrix defining which response a certain sampling time belongs to. |
maxni |
Max number of samples per group/individual |
minni |
Min number of samples per group/individual |
maxtotni |
Number defining the maximum number of samples allowed in the experiment. |
mintotni |
Number defining the minimum number of samples allowed in the experiment. |
maxgroupsize |
Vector defining the max size of the different groups (max number of individuals in each group) |
mingroupsize |
Vector defining the min size of the different groups (min num individuals in each group) – |
maxtotgroupsize |
The total maximal groupsize over all groups |
mintotgroupsize |
The total minimal groupsize over all groups |
maxxt |
Matrix or single value defining the maximum value for each xt sample. If a single value is supplied then all xt values are given the same maximum value. |
minxt |
Matrix or single value defining the minimum value for each xt sample. If a single value is supplied then all xt values are given the same minimum value |
discrete_xt |
Cell array |
discrete_x |
Cell array defining the discrete variables for each x value.
See examples in |
maxa |
Vector defining the max value for each covariate. If a single value is supplied then all a values are given the same max value |
mina |
Vector defining the min value for each covariate. If a single value is supplied then all a values are given the same max value |
discrete_a |
Cell array |
bUseGrouped_xt |
Use grouped time points (1=TRUE, 0=FALSE). |
G_xt |
Matrix defining the grouping of sample points. Matching integers mean that the points are matched. |
bUseGrouped_a |
Use grouped covariates (1=TRUE, 0=FALSE) |
G_a |
Matrix defining the grouping of covariates. Matching integers mean that the points are matched. |
bUseGrouped_x |
Use grouped discrete design variables (1=TRUE, 0=FALSE). |
G_x |
Matrix defining the grouping of discrete design variables. Matching integers mean that the points are matched. |
iFIMCalculationType |
Fisher Information Matrix type
|
iApproximationMethod |
Approximation method for model, 0=FO, 1=FOCE, 2=FOCEI, 3=FOI |
iFOCENumInd |
Num individuals in each step of FOCE |
prior_fim |
The prior FIM (added to calculated FIM) |
strAutoCorrelationFile |
Filename and path, or function name, for the Autocorrelation function, empty string means no autocorrelation. |
d_switch |
D-family design (1) or ED-family design (0) (with or without parameter uncertainty) |
ofv_calc_type |
OFV calculation type for FIM
|
ds_index |
Ds_index is a vector set to 1 if a parameter is uninteresting, otherwise 0.
size=(1,num unfixed parameters). First unfixed bpop, then unfixed d, then unfixed docc and last unfixed sigma.
Default is the fixed effects being important, everything else not important. Used in conjunction with
|
strEDPenaltyFile |
Penalty function name or path and filename, empty string means no penalty. User defined criterion can be defined this way. |
ofv_fun |
User defined function used to compute the objective function. The function must have a poped database object as its first argument and have "..." in its argument list. Can be referenced as a function or as a file name where the function defined in the file has the same name as the file. e.g. "cost.txt" has a function named "cost" in it. |
iEDCalculationType |
ED Integral Calculation, 0=Monte-Carlo-Integration, 1=Laplace Approximation, 2=BFGS Laplace Approximation – – |
ED_samp_size |
Sample size for E-family sampling |
bLHS |
How to sample from distributions in E-family calculations. 0=Random Sampling, 1=LatinHyperCube – |
strUserDistributionFile |
Filename and path, or function name, for user defined distributions for E-family designs |
nbpop |
Number of typical values |
NumRanEff |
Number of IIV parameters. Typically can be computed from other values and not supplied. |
NumDocc |
Number of IOV variance parameters. Typically can be computed from other values and not supplied. |
NumOcc |
Number of occasions. Typically can be computed from other values and not supplied. |
bpop |
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
Can also just supply the parameter values as a vector |
d |
Matrix defining the diagonals of the IIV (same logic as for the fixed effects
matrix bpop to define uncertainty). One can also just supply the parameter values as a |
covd |
Column major vector defining the covariances of the IIV variances.
That is, from your full IIV matrix |
sigma |
Matrix defining the variances can covariances of the residual variability terms of the model.
can also just supply the diagonal parameter values (variances) as a |
docc |
Matrix defining the IOV, the IOV variances and the IOV distribution as for d and bpop. |
covdocc |
Column major vector defining the covariance of the IOV, as in covd. |
notfixed_bpop |
Vector defining if a typical value is fixed or not (1=not fixed, 0=fixed). The parameter order of 'notfixed_bpop' is defined in the 'fg_fun' or 'fg_file'. If you use named arguments in 'notfixed_bpop' then the order of this vector can be rearranged to match the 'fg_fun' or 'fg_file'. See 'reorder_parameter_vectors'. |
notfixed_d |
Vector defining if a IIV is fixed or not (1=not fixed, 0=fixed). The parameter order of 'notfixed_d' is defined in the 'fg_fun' or 'fg_file'. If you use named arguments in 'notfixed_d' then the order of this vector can be rearranged to match the 'fg_fun' or 'fg_file'. See 'reorder_parameter_vectors'. . |
notfixed_covd |
Vector defining if a covariance IIV is fixed or not (1=not fixed, 0=fixed) |
notfixed_docc |
Vector defining if an IOV variance is fixed or not (1=not fixed, 0=fixed) |
notfixed_covdocc |
Vector row major order for lower triangular matrix defining if a covariance IOV is fixed or not (1=not fixed, 0=fixed) |
notfixed_sigma |
Vector defining if a residual error parameter is fixed or not (1=not fixed, 0=fixed) |
notfixed_covsigma |
Vector defining if a covariance residual error parameter is fixed or not (1=not fixed, 0=fixed). Default is fixed. |
reorder_parameter_vectors |
If you use named arguments in 'bpop' or 'd' then PopED will try to figure out the order of the parameters based on what is found in the 'fg_fun'. See the resulting ‘poped_db$parameters' and make sure the order matches with ’fg_fun'. |
bUseRandomSearch |
Use random search (1=TRUE, 0=FALSE) |
bUseStochasticGradient |
Use Stochastic Gradient search (1=TRUE, 0=FALSE) |
bUseLineSearch |
Use Line search (1=TRUE, 0=FALSE) |
bUseExchangeAlgorithm |
Use Exchange algorithm (1=TRUE, 0=FALSE) |
bUseBFGSMinimizer |
Use BFGS Minimizer (1=TRUE, 0=FALSE) |
EACriteria |
Exchange Algorithm Criteria, 1 = Modified, 2 = Fedorov |
strRunFile |
Filename and path, or function name, for a run file that is used instead of the regular PopED call. |
poped_version |
The current PopED version |
modtit |
The model title |
output_file |
Filename and path of the output file during search |
output_function_file |
Filename suffix of the result function file |
strIterationFileName |
Filename and path for storage of current optimal design |
user_data |
User defined data structure that, for example could be used to send in data to the model |
ourzero |
Value to interpret as zero in design |
dSeed |
The seed number used for optimization and sampling – integer or -1 which creates a random seed |
line_opta |
Vector for line search on continuous design variables (1=TRUE,0=FALSE) |
line_optx |
Vector for line search on discrete design variables (1=TRUE,0=FALSE) |
bShowGraphs |
Use graph output during search |
use_logfile |
If a log file should be used (0=FALSE, 1=TRUE) |
m1_switch |
Method used to calculate M1 (0=Complex difference, 1=Central difference, 20=Analytic derivative, 30=Automatic differentiation) |
m2_switch |
Method used to calculate M2 (0=Central difference, 1=Central difference, 20=Analytic derivative, 30=Automatic differentiation) |
hle_switch |
Method used to calculate linearization of residual error (0=Complex difference, 1=Central difference, 30=Automatic differentiation) |
gradff_switch |
Method used to calculate the gradient of the model (0=Complex difference, 1=Central difference, 20=Analytic derivative, 30=Automatic differentiation) |
gradfg_switch |
Method used to calculate the gradient of the parameter vector g (0=Complex difference, 1=Central difference, 20=Analytic derivative, 30=Automatic differentiation) |
grad_all_switch |
Method used to calculate all the gradients (0=Complex difference, 1=Central difference) |
rsit_output |
Number of iterations in random search between screen output |
sgit_output |
Number of iterations in stochastic gradient search between screen output |
hm1 |
Step length of derivative of linearized model w.r.t. typical values |
hlf |
Step length of derivative of model w.r.t. g |
hlg |
Step length of derivative of g w.r.t. b |
hm2 |
Step length of derivative of variance w.r.t. typical values |
hgd |
Step length of derivative of OFV w.r.t. time |
hle |
Step length of derivative of model w.r.t. sigma |
AbsTol |
The absolute tolerance for the diff equation solver |
RelTol |
The relative tolerance for the diff equation solver |
iDiffSolverMethod |
The diff equation solver method, NULL as default. |
bUseMemorySolver |
If the differential equation results should be stored in memory (1) or not (0) |
rsit |
Number of Random search iterations |
sgit |
Number of stochastic gradient iterations |
intrsit |
Number of Random search iterations with discrete optimization. |
intsgit |
Number of Stochastic Gradient search iterations with discrete optimization |
maxrsnullit |
Iterations until adaptive narrowing in random search |
convergence_eps |
Stochastic Gradient convergence value, (difference in OFV for D-optimal, difference in gradient for ED-optimal) |
rslxt |
Random search locality factor for sample times |
rsla |
Random search locality factor for covariates |
cfaxt |
Stochastic Gradient search first step factor for sample times |
cfaa |
Stochastic Gradient search first step factor for covariates |
bGreedyGroupOpt |
Use greedy algorithm for group assignment optimization |
EAStepSize |
Exchange Algorithm StepSize |
EANumPoints |
Exchange Algorithm NumPoints |
EAConvergenceCriteria |
Exchange Algorithm Convergence Limit/Criteria |
bEANoReplicates |
Avoid replicate samples when using Exchange Algorithm |
BFGSConvergenceCriteriaMinStep |
BFGS Minimizer Convergence Criteria Minimum Step |
BFGSProjectedGradientTol |
BFGS Minimizer Convergence Criteria Normalized Projected Gradient Tolerance |
BFGSTolerancef |
BFGS Minimizer Line Search Tolerance f |
BFGSToleranceg |
BFGS Minimizer Line Search Tolerance g |
BFGSTolerancex |
BFGS Minimizer Line Search Tolerance x |
ED_diff_it |
Number of iterations in ED-optimal design to calculate convergence criteria |
ED_diff_percent |
ED-optimal design convergence criteria in percent |
line_search_it |
Number of grid points in the line search |
Doptim_iter |
Number of iterations of full Random search and full Stochastic Gradient if line search is not used |
iCompileOption |
******START OF PARALLEL OPTIONS********** Compile options for PopED
|
iUseParallelMethod |
Parallel method to use (0 = Matlab PCT, 1 = MPI) |
MCC_Dep |
Additional dependencies used in MCC compilation (mat-files), if several space separated |
strExecuteName |
Compilation output executable name |
iNumProcesses |
Number of processes to use when running in parallel (e.g. 3 = 2 workers, 1 job manager) |
iNumChunkDesignEvals |
Number of design evaluations that should be evaluated in each process before getting new work from job manager |
Mat_Out_Pre |
The prefix of the output mat file to communicate with the executable |
strExtraRunOptions |
Extra options send to e$g. the MPI executable or a batch script, see execute_parallel$m for more information and options |
dPollResultTime |
Polling time to check if the parallel execution is finished |
strFunctionInputName |
The file containing the popedInput structure that should be used to evaluate the designs |
bParallelRS |
If the random search is going to be executed in parallel |
bParallelSG |
If the stochastic gradient search is going to be executed in parallel |
bParallelMFEA |
If the modified exchange algorithm is going to be executed in parallel |
bParallelLS |
If the line search is going to be executed in parallel |
A PopED database
Other poped_input:
convert_variables()
,
create_design()
,
create_design_space()
,
downsizing_general_design()
,
poped.choose()
## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database( ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## evaluate initial design evaluate_design(poped.db)
## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database( ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## evaluate initial design evaluate_design(poped.db)
Display a summary of output from poped_db
design_summary(poped_db, file = "", ...)
design_summary(poped_db, file = "", ...)
poped_db |
An object returned from |
file |
A file handle to write to. Default is to the R console. |
... |
Additional arguments. Passed to |
Efficiency calculation between two designs.
efficiency( ofv_init, ofv_final, poped_db, npar = get_fim_size(poped_db), ofv_calc_type = poped_db$settings$ofv_calc_type, ds_index = poped_db$parameters$ds_index, use_log = TRUE, ... )
efficiency( ofv_init, ofv_final, poped_db, npar = get_fim_size(poped_db), ofv_calc_type = poped_db$settings$ofv_calc_type, ds_index = poped_db$parameters$ds_index, use_log = TRUE, ... )
ofv_init |
An initial objective function |
ofv_final |
A final objective function. |
poped_db |
a poped database |
npar |
The number of parameters to use for normalization. |
ofv_calc_type |
OFV calculation type for FIM
|
ds_index |
Ds_index is a vector set to 1 if a parameter is uninteresting, otherwise 0.
size=(1,num unfixed parameters). First unfixed bpop, then unfixed d, then unfixed docc and last unfixed sigma.
Default is the fixed effects being important, everything else not important. Used in conjunction with
|
use_log |
Are the 'ofv' arguments in the log space? |
... |
arguments passed to |
The specified efficiency value depending on the ofv_calc_type.
The attribute "description" tells you how the calculation was made
attr(return_vale,"description")
Other FIM:
LinMatrixH()
,
LinMatrixLH()
,
LinMatrixL_occ()
,
calc_ofv_and_fim()
,
ed_laplace_ofv()
,
ed_mftot()
,
evaluate.e.ofv.fim()
,
evaluate.fim()
,
gradf_eps()
,
mf3()
,
mf7()
,
mftot()
,
ofv_criterion()
,
ofv_fim()
This function evaluates the design defined in a poped database.
evaluate_design(poped.db, ...)
evaluate_design(poped.db, ...)
poped.db |
A poped database |
... |
Extra parameters passed to |
A list of elements evaluating the current design.
Other evaluate_design:
evaluate.fim()
,
evaluate_power()
,
get_rse()
,
model_prediction()
,
plot_efficiency_of_windows()
,
plot_model_prediction()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### evaluate_design(poped.db)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### evaluate_design(poped.db)
Computation of the Bayesian Fisher information matrix for individual parameters of a population model based on Maximum A Posteriori (MAP) estimation of the empirical Bayes estimates (EBEs) in a population model
evaluate_fim_map( poped.db, use_mc = FALSE, num_sim_ids = 1000, use_purrr = FALSE, shrink_mat = F )
evaluate_fim_map( poped.db, use_mc = FALSE, num_sim_ids = 1000, use_purrr = FALSE, shrink_mat = F )
poped.db |
A PopED database |
use_mc |
Should the calculation be based on monte-carlo simulations. If not then then a first order approximation is used |
num_sim_ids |
If |
use_purrr |
If |
shrink_mat |
Should the shrinkage matrix be returned. Calculated as the inverse of the Bayesian Fisher information matrix times the inverse of the omega matrix (variance matrix of the between-subject variability). |
The Bayesian Fisher information matrix for each design group
Combes, F. P., Retout, S., Frey, N., & Mentre, F. (2013). Prediction of shrinkage of individual parameters using the Bayesian information matrix in non-linear mixed effect models with evaluation in pharmacokinetics. Pharmaceutical Research, 30(9), 2355-67. doi:10.1007/s11095-013-1079-3.
Hennig, S., Nyberg, J., Fanta, S., Backman, J. T., Hoppu, K., Hooker, A. C., & Karlsson, M. O. (2012). Application of the optimal design approach to improve a pretransplant drug dose finding design for ciclosporin. Journal of Clinical Pharmacology, 52(3), 347-360. doi:10.1177/0091270010397731.
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### shrinkage(poped.db)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### shrinkage(poped.db)
Evaluate the power of a design to estimate a parameter value different than some assumed value (often the assumed value is zero). The power is calculated using the linear Wald test and the the design is defined in a poped database.
evaluate_power( poped.db, bpop_idx, h0 = 0, alpha = 0.05, power = 0.8, twoSided = TRUE, find_min_n = TRUE, fim = NULL, out = NULL, ... )
evaluate_power( poped.db, bpop_idx, h0 = 0, alpha = 0.05, power = 0.8, twoSided = TRUE, find_min_n = TRUE, fim = NULL, out = NULL, ... )
poped.db |
A poped database |
bpop_idx |
Index for an unfixed population parameter (bpop) for which the power should be evaluated for being different than the null hypothesis (h0). |
h0 |
The null hypothesized value for the parameter. |
alpha |
Type 1 error. |
power |
Targeted power. |
twoSided |
Is this a two-sided test. |
find_min_n |
Should the function compute the minimum n needed (given the current design) to achieve the desired power? |
fim |
Provide the FIM from a previous calculation |
out |
provide output from a previous calculation (e.g., calc_ofv_and_fim, ...) |
... |
Extra parameters passed to |
A list of elements evaluating the current design including the power.
Retout, S., Comets, E., Samson, A., and Mentre, F. (2007). Design in nonlinear mixed effects models: Optimization using the Fedorov-Wynn algorithm and power of the Wald test for binary covariates. Statistics in Medicine, 26(28), 5162-5179. doi:10.1002/sim.2910.
Ueckert, S., Hennig, S., Nyberg, J., Karlsson, M. O., and Hooker, A. C. (2013). Optimizing disease progression study designs for drug effect discrimination. Journal of Pharmacokinetics and Pharmacodynamics, 40(5), 587-596. doi:10.1007/s10928-013-9331-3.
Other evaluate_design:
evaluate.fim()
,
evaluate_design()
,
get_rse()
,
model_prediction()
,
plot_efficiency_of_windows()
,
plot_model_prediction()
# Folowing the examples presented in Retout, 2007 ff <- function(model_switch,xt,parameters,poped.db){ with(as.list(parameters),{ lambda1 <- lam1a if(TREAT==2) lambda1 <- lam1b y=log10(P1*exp(-lambda1*xt)+P2*exp(-lam2*xt)) return(list(y=y,poped.db=poped.db)) }) } sfg <- function(x,a,bpop,b,bocc){ parameters=c(P1=exp(bpop[1]+b[1]), P2=exp(bpop[2]+b[2]), lam1a=exp(bpop[3]+b[3]), lam1b=exp(bpop[3]+bpop[4]+b[3]), lam2=exp(bpop[5]+b[4]), TREAT=a[1]) return(parameters) } poped.db <- create.poped.database(ff_fun = ff, fg_fun = sfg, fError_fun = feps.add, bpop=c(P1=12, P2=8, lam1=-0.7,beta=0,lam2=-3.0), d=c(P1=0.3, P2=0.3, lam1=0.3,lam2=0.3), sigma=c(0.065^2), groupsize=100, m=2, xt=c(1, 3, 7, 14, 28, 56), minxt=0, maxxt=100, a=list(c(TREAT=1),c(TREAT=2))) plot_model_prediction(poped.db) evaluate_design(poped.db) poped.db_2 <- create.poped.database(poped.db,bpop=c(P1=12, P2=8, lam1=-0.7,beta=0.262,lam2=-3.0)) plot_model_prediction(poped.db_2) evaluate_design(poped.db_2) evaluate_power(poped.db_2,bpop_idx = 4)
# Folowing the examples presented in Retout, 2007 ff <- function(model_switch,xt,parameters,poped.db){ with(as.list(parameters),{ lambda1 <- lam1a if(TREAT==2) lambda1 <- lam1b y=log10(P1*exp(-lambda1*xt)+P2*exp(-lam2*xt)) return(list(y=y,poped.db=poped.db)) }) } sfg <- function(x,a,bpop,b,bocc){ parameters=c(P1=exp(bpop[1]+b[1]), P2=exp(bpop[2]+b[2]), lam1a=exp(bpop[3]+b[3]), lam1b=exp(bpop[3]+bpop[4]+b[3]), lam2=exp(bpop[5]+b[4]), TREAT=a[1]) return(parameters) } poped.db <- create.poped.database(ff_fun = ff, fg_fun = sfg, fError_fun = feps.add, bpop=c(P1=12, P2=8, lam1=-0.7,beta=0,lam2=-3.0), d=c(P1=0.3, P2=0.3, lam1=0.3,lam2=0.3), sigma=c(0.065^2), groupsize=100, m=2, xt=c(1, 3, 7, 14, 28, 56), minxt=0, maxxt=100, a=list(c(TREAT=1),c(TREAT=2))) plot_model_prediction(poped.db) evaluate_design(poped.db) poped.db_2 <- create.poped.database(poped.db,bpop=c(P1=12, P2=8, lam1=-0.7,beta=0.262,lam2=-3.0)) plot_model_prediction(poped.db_2) evaluate_design(poped.db_2) evaluate_power(poped.db_2,bpop_idx = 4)
Compute the expectation of the FIM and OFV(FIM) given the model, parameters, distributions of parameter uncertainty, design and methods defined in the
PopED database. Some of the arguments coming from the PopED database can be overwritten;
by default these arguments are NULL
in the
function, if they are supplied then they are used instead of the arguments from the PopED database.
evaluate.e.ofv.fim( poped.db, fim.calc.type = NULL, bpop = poped.db$parameters$bpop, d = poped.db$parameters$d, covd = poped.db$parameters$covd, docc = poped.db$parameters$docc, sigma = poped.db$parameters$sigma, model_switch = NULL, ni = NULL, xt = NULL, x = NULL, a = NULL, groupsize = poped.db$design$groupsize, deriv.type = NULL, bLHS = poped.db$settings$bLHS, ofv_calc_type = poped.db$settings$ofv_calc_type, ED_samp_size = poped.db$settings$ED_samp_size, use_laplace = poped.db$settings$iEDCalculationType, laplace.fim = FALSE, ... )
evaluate.e.ofv.fim( poped.db, fim.calc.type = NULL, bpop = poped.db$parameters$bpop, d = poped.db$parameters$d, covd = poped.db$parameters$covd, docc = poped.db$parameters$docc, sigma = poped.db$parameters$sigma, model_switch = NULL, ni = NULL, xt = NULL, x = NULL, a = NULL, groupsize = poped.db$design$groupsize, deriv.type = NULL, bLHS = poped.db$settings$bLHS, ofv_calc_type = poped.db$settings$ofv_calc_type, ED_samp_size = poped.db$settings$ED_samp_size, use_laplace = poped.db$settings$iEDCalculationType, laplace.fim = FALSE, ... )
poped.db |
A PopED database. |
fim.calc.type |
The method used for calculating the FIM. Potential values:
|
bpop |
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
Can also just supply the parameter values as a vector |
d |
Matrix defining the diagonals of the IIV (same logic as for the fixed effects
matrix bpop to define uncertainty). One can also just supply the parameter values as a |
covd |
Column major vector defining the covariances of the IIV variances.
That is, from your full IIV matrix |
docc |
Matrix defining the IOV, the IOV variances and the IOV distribution as for d and bpop. |
sigma |
Matrix defining the variances can covariances of the residual variability terms of the model.
can also just supply the diagonal parameter values (variances) as a |
model_switch |
A matrix that is the same size as xt, specifying which model each sample belongs to. |
ni |
A vector of the number of samples in each group. |
xt |
A matrix of sample times. Each row is a vector of sample times for a group. |
x |
A matrix for the discrete design variables. Each row is a group. |
a |
A matrix of covariates. Each row is a group. |
groupsize |
A vector of the number of individuals in each group. |
deriv.type |
A number indicating the type of derivative to use:
|
bLHS |
How to sample from distributions in E-family calculations. 0=Random Sampling, 1=LatinHyperCube – |
ofv_calc_type |
OFV calculation type for FIM
|
ED_samp_size |
Sample size for E-family sampling |
use_laplace |
Should the Laplace method be used in calculating the expectation of the OFV? |
laplace.fim |
Should an E(FIM) be calculated when computing the Laplace approximated E(OFV). Typically the FIM does not need to be computed and, if desired, this calculation is done using the standard MC integration technique, so can be slow. |
... |
Other arguments passed to the function. |
A list containing the E(FIM) and E(OFV(FIM)) and the a poped.db updated according to the function arguments.
Other FIM:
LinMatrixH()
,
LinMatrixLH()
,
LinMatrixL_occ()
,
calc_ofv_and_fim()
,
ed_laplace_ofv()
,
ed_mftot()
,
efficiency()
,
evaluate.fim()
,
gradf_eps()
,
mf3()
,
mf7()
,
mftot()
,
ofv_criterion()
,
ofv_fim()
Other E-family:
calc_ofv_and_fim()
,
ed_laplace_ofv()
,
ed_mftot()
Other evaluate_FIM:
calc_ofv_and_fim()
,
evaluate.fim()
,
ofv_fim()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samoples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) ############# END ################### ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### ## ED evaluate (with very few samples) output <- evaluate.e.ofv.fim(poped.db,ED_samp_size=10) output$E_ofv ## API evaluate (with very few samples) output <- evaluate.e.ofv.fim(poped.db,ED_samp_size=10,ofv_calc_type=4) output$E_ofv ## ED evaluate using Laplace approximation tic() output <- evaluate.e.ofv.fim(poped.db,use_laplace=TRUE) toc() output$E_ofv ## Not run: ## ED expected value with more precision. ## Compare time and value to Laplace approximation. ## Run a couple of times to see stochasticity of calculation. tic() e_ofv_mc <- evaluate.e.ofv.fim(poped.db,ED_samp_size=500) toc() e_ofv_mc$E_ofv # If you want to get an E(FIM) from the laplace approximation you have to ask for it # and it will take more time. output <- evaluate.e.ofv.fim(poped.db,use_laplace=TRUE,laplace.fim=TRUE) output$E_fim ## End(Not run)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samoples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) ############# END ################### ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### ## ED evaluate (with very few samples) output <- evaluate.e.ofv.fim(poped.db,ED_samp_size=10) output$E_ofv ## API evaluate (with very few samples) output <- evaluate.e.ofv.fim(poped.db,ED_samp_size=10,ofv_calc_type=4) output$E_ofv ## ED evaluate using Laplace approximation tic() output <- evaluate.e.ofv.fim(poped.db,use_laplace=TRUE) toc() output$E_ofv ## Not run: ## ED expected value with more precision. ## Compare time and value to Laplace approximation. ## Run a couple of times to see stochasticity of calculation. tic() e_ofv_mc <- evaluate.e.ofv.fim(poped.db,ED_samp_size=500) toc() e_ofv_mc$E_ofv # If you want to get an E(FIM) from the laplace approximation you have to ask for it # and it will take more time. output <- evaluate.e.ofv.fim(poped.db,use_laplace=TRUE,laplace.fim=TRUE) output$E_fim ## End(Not run)
Compute the FIM given the model, parameters, design and methods defined in the
PopED database. Some of the arguments coming from the PopED database can be overwritten;
by default these arguments are NULL
in the
function, if they are supplied then they are used instead of the arguments from the PopED database.
evaluate.fim( poped.db, fim.calc.type = NULL, approx.method = NULL, FOCE.num = NULL, bpop.val = NULL, d_full = NULL, docc_full = NULL, sigma_full = NULL, model_switch = NULL, ni = NULL, xt = NULL, x = NULL, a = NULL, groupsize = NULL, deriv.type = NULL, ... )
evaluate.fim( poped.db, fim.calc.type = NULL, approx.method = NULL, FOCE.num = NULL, bpop.val = NULL, d_full = NULL, docc_full = NULL, sigma_full = NULL, model_switch = NULL, ni = NULL, xt = NULL, x = NULL, a = NULL, groupsize = NULL, deriv.type = NULL, ... )
poped.db |
A PopED database. |
fim.calc.type |
The method used for calculating the FIM. Potential values:
|
approx.method |
Approximation method for model, 0=FO, 1=FOCE, 2=FOCEI, 3=FOI |
FOCE.num |
Number individuals in each step of FOCE approximation method |
bpop.val |
The fixed effects parameter values. Supplied as a vector. |
d_full |
A between subject variability matrix (OMEGA in NONMEM). |
docc_full |
A between occasion variability matrix. |
sigma_full |
A residual unexplained variability matrix (SIGMA in NONMEM). |
model_switch |
A matrix that is the same size as xt, specifying which model each sample belongs to. |
ni |
A vector of the number of samples in each group. |
xt |
A matrix of sample times. Each row is a vector of sample times for a group. |
x |
A matrix for the discrete design variables. Each row is a group. |
a |
A matrix of covariates. Each row is a group. |
groupsize |
A vector of the number of individuals in each group. |
deriv.type |
A number indicating the type of derivative to use:
|
... |
Other arguments passed to the function. |
The FIM.
Other FIM:
LinMatrixH()
,
LinMatrixLH()
,
LinMatrixL_occ()
,
calc_ofv_and_fim()
,
ed_laplace_ofv()
,
ed_mftot()
,
efficiency()
,
evaluate.e.ofv.fim()
,
gradf_eps()
,
mf3()
,
mf7()
,
mftot()
,
ofv_criterion()
,
ofv_fim()
Other evaluate_design:
evaluate_design()
,
evaluate_power()
,
get_rse()
,
model_prediction()
,
plot_efficiency_of_windows()
,
plot_model_prediction()
Other evaluate_FIM:
calc_ofv_and_fim()
,
evaluate.e.ofv.fim()
,
ofv_fim()
## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun = ff.PK.1.comp.oral.sd.CL, fg_fun = sfg, fError_fun = feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), # notfixed_bpop=c(1,1,1,0), notfixed_bpop=c(CL=1,V=1,KA=1,Favail=0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## evaluate initial design with the reduced FIM FIM.1 <- evaluate.fim(poped.db) FIM.1 det(FIM.1) det(FIM.1)^(1/7) get_rse(FIM.1,poped.db) ## evaluate initial design with the full FIM FIM.0 <- evaluate.fim(poped.db,fim.calc.type=0) FIM.0 det(FIM.0) det(FIM.0)^(1/7) get_rse(FIM.0,poped.db) ## evaluate initial design with the reduced FIM ## computing all derivatives with respect to the ## standard deviation of the residual unexplained variation FIM.4 <- evaluate.fim(poped.db,fim.calc.type=4) FIM.4 det(FIM.4) get_rse(FIM.4,poped.db,fim.calc.type=4) ## evaluate initial design with the full FIM with A,B,C matricies ## should give same answer as fim.calc.type=0 FIM.5 <- evaluate.fim(poped.db,fim.calc.type=5) FIM.5 det(FIM.5) get_rse(FIM.5,poped.db,fim.calc.type=5) ## evaluate initial design with the reduced FIM with ## A,B,C matricies and derivative of variance ## should give same answer as fim.calc.type=1 (default) FIM.7 <- evaluate.fim(poped.db,fim.calc.type=7) FIM.7 det(FIM.7) get_rse(FIM.7,poped.db,fim.calc.type=7) ## evaluate FIM and rse with prior FIM.1 poped.db.prior = create.poped.database(poped.db, prior_fim = FIM.1) FIM.1.prior <- evaluate.fim(poped.db.prior) all.equal(FIM.1.prior,FIM.1) # the FIM is only computed from the design in the poped.db get_rse(FIM.1.prior,poped.db.prior) # the RSE is computed with the prior information
## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun = ff.PK.1.comp.oral.sd.CL, fg_fun = sfg, fError_fun = feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), # notfixed_bpop=c(1,1,1,0), notfixed_bpop=c(CL=1,V=1,KA=1,Favail=0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## evaluate initial design with the reduced FIM FIM.1 <- evaluate.fim(poped.db) FIM.1 det(FIM.1) det(FIM.1)^(1/7) get_rse(FIM.1,poped.db) ## evaluate initial design with the full FIM FIM.0 <- evaluate.fim(poped.db,fim.calc.type=0) FIM.0 det(FIM.0) det(FIM.0)^(1/7) get_rse(FIM.0,poped.db) ## evaluate initial design with the reduced FIM ## computing all derivatives with respect to the ## standard deviation of the residual unexplained variation FIM.4 <- evaluate.fim(poped.db,fim.calc.type=4) FIM.4 det(FIM.4) get_rse(FIM.4,poped.db,fim.calc.type=4) ## evaluate initial design with the full FIM with A,B,C matricies ## should give same answer as fim.calc.type=0 FIM.5 <- evaluate.fim(poped.db,fim.calc.type=5) FIM.5 det(FIM.5) get_rse(FIM.5,poped.db,fim.calc.type=5) ## evaluate initial design with the reduced FIM with ## A,B,C matricies and derivative of variance ## should give same answer as fim.calc.type=1 (default) FIM.7 <- evaluate.fim(poped.db,fim.calc.type=7) FIM.7 det(FIM.7) get_rse(FIM.7,poped.db,fim.calc.type=7) ## evaluate FIM and rse with prior FIM.1 poped.db.prior = create.poped.database(poped.db, prior_fim = FIM.1) FIM.1.prior <- evaluate.fim(poped.db.prior) all.equal(FIM.1.prior,FIM.1) # the FIM is only computed from the design in the poped.db get_rse(FIM.1.prior,poped.db.prior) # the RSE is computed with the prior information
This is a residual unexplained variability (RUV) model function that encodes the model described above.
The function is suitable for input to the create.poped.database
function using the
fError_file
argument.
feps.add(model_switch, xt, parameters, epsi, poped.db)
feps.add(model_switch, xt, parameters, epsi, poped.db)
model_switch |
a vector of values, the same size as |
xt |
a vector of independent variable values (often time). |
parameters |
A named list of parameter values. |
epsi |
A matrix with the same number of rows as the |
poped.db |
a poped database. This can be used to extract information that may be needed in the model file. |
A list consisting of:
y the values of the model at the specified points.
poped.db A (potentially modified) poped database.
Other models:
feps.add.prop()
,
feps.prop()
,
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
Other RUV_models:
feps.add.prop()
,
feps.prop()
library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.KE ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(KE=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.KE, fg_fun=sfg, fError_fun=feps.add, bpop=c(KE=0.15/8, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(KE=0.07, V=0.02, KA=0.6), sigma=1, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.KE ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(KE=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.KE, fg_fun=sfg, fError_fun=feps.add, bpop=c(KE=0.15/8, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(KE=0.07, V=0.02, KA=0.6), sigma=1, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
This is a residual unexplained variability (RUV) model function that encodes the model described above.
The function is suitable for input to the create.poped.database
function using the
fError_file
argument.
feps.add.prop(model_switch, xt, parameters, epsi, poped.db)
feps.add.prop(model_switch, xt, parameters, epsi, poped.db)
model_switch |
a vector of values, the same size as |
xt |
a vector of independent variable values (often time). |
parameters |
A named list of parameter values. |
epsi |
A matrix with the same number of rows as the |
poped.db |
a poped database. This can be used to extract information that may be needed in the model file. |
A list consisting of:
y the values of the model at the specified points.
poped.db A (potentially modified) poped database.
Other models:
feps.add()
,
feps.prop()
,
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
Other RUV_models:
feps.add()
,
feps.prop()
library(PopED) ## find the parameters that are needed to define in the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), CL=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU=a[2]) return( parameters ) } ## -- Define design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.md.CL, fg_fun=sfg, fError_fun=feps.add.prop, groupsize=20, m=2, sigma=c(0.04,5e-6), bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9), d=c(V=0.09,KA=0.09,CL=0.25^2), notfixed_bpop=c(1,1,1,0), notfixed_sigma=c(0,0), xt=c( 1,2,8,240,245), minxt=c(0,0,0,240,240), maxxt=c(10,10,10,248,248), a=cbind(c(20,40),c(24,24)), bUseGrouped_xt=1, maxa=c(200,24), mina=c(0,24)) ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
library(PopED) ## find the parameters that are needed to define in the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), CL=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU=a[2]) return( parameters ) } ## -- Define design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.md.CL, fg_fun=sfg, fError_fun=feps.add.prop, groupsize=20, m=2, sigma=c(0.04,5e-6), bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9), d=c(V=0.09,KA=0.09,CL=0.25^2), notfixed_bpop=c(1,1,1,0), notfixed_sigma=c(0,0), xt=c( 1,2,8,240,245), minxt=c(0,0,0,240,240), maxxt=c(10,10,10,248,248), a=cbind(c(20,40),c(24,24)), bUseGrouped_xt=1, maxa=c(200,24), mina=c(0,24)) ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
This is a residual unexplained variability (RUV) model function that encodes the model described above.
The function is suitable for input to the create.poped.database
function using the
fError_file
argument.
feps.prop(model_switch, xt, parameters, epsi, poped.db)
feps.prop(model_switch, xt, parameters, epsi, poped.db)
model_switch |
a vector of values, the same size as |
xt |
a vector of independent variable values (often time). |
parameters |
A named list of parameter values. |
epsi |
A matrix with the same number of rows as the |
poped.db |
a poped database. This can be used to extract information that may be needed in the model file. |
A list consisting of:
y the values of the model at the specified points.
poped.db A (potentially modified) poped database.
Other models:
feps.add()
,
feps.add.prop()
,
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
Other RUV_models:
feps.add()
,
feps.add.prop()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
This is a structural model function that encodes a model that is
one-compartment, oral absorption, multiple bolus dose, parameterized using CL.
The function is suitable for input to the create.poped.database
function using the
ff_fun
or ff_file
argument.
ff.PK.1.comp.oral.md.CL(model_switch, xt, parameters, poped.db)
ff.PK.1.comp.oral.md.CL(model_switch, xt, parameters, poped.db)
model_switch |
a vector of values, the same size as |
xt |
a vector of independent variable values (often time). |
parameters |
A named list of parameter values. |
poped.db |
a poped database. This can be used to extract information that may be needed in the model file. |
A list consisting of:
y the values of the model at the specified points.
poped.db A (potentially modified) poped database.
Other models:
feps.add()
,
feps.add.prop()
,
feps.prop()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
Other structural_models:
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
library(PopED) ## find the parameters that are needed to define in the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), CL=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU=a[2]) return( parameters ) } ## -- Define design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.md.CL, fg_fun=sfg, fError_fun=feps.add.prop, groupsize=20, m=2, sigma=c(0.04,5e-6), bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9), d=c(V=0.09,KA=0.09,CL=0.25^2), notfixed_bpop=c(1,1,1,0), notfixed_sigma=c(0,0), xt=c( 1,2,8,240,245), minxt=c(0,0,0,240,240), maxxt=c(10,10,10,248,248), a=cbind(c(20,40),c(24,24)), bUseGrouped_xt=1, maxa=c(200,24), mina=c(0,24)) ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
library(PopED) ## find the parameters that are needed to define in the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), CL=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU=a[2]) return( parameters ) } ## -- Define design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.md.CL, fg_fun=sfg, fError_fun=feps.add.prop, groupsize=20, m=2, sigma=c(0.04,5e-6), bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9), d=c(V=0.09,KA=0.09,CL=0.25^2), notfixed_bpop=c(1,1,1,0), notfixed_sigma=c(0,0), xt=c( 1,2,8,240,245), minxt=c(0,0,0,240,240), maxxt=c(10,10,10,248,248), a=cbind(c(20,40),c(24,24)), bUseGrouped_xt=1, maxa=c(200,24), mina=c(0,24)) ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
This is a structural model function that encodes a model that is
one-compartment, oral absorption, multiple bolus dose, parameterized using KE.
The function is suitable for input to the create.poped.database
function using the
ff_fun
or ff_file
argument.
ff.PK.1.comp.oral.md.KE(model_switch, xt, parameters, poped.db)
ff.PK.1.comp.oral.md.KE(model_switch, xt, parameters, poped.db)
model_switch |
a vector of values, the same size as |
xt |
a vector of independent variable values (often time). |
parameters |
A named list of parameter values. |
poped.db |
a poped database. This can be used to extract information that may be needed in the model file. |
A list consisting of:
y the values of the model at the specified points.
poped.db A (potentially modified) poped database.
Other models:
feps.add()
,
feps.add.prop()
,
feps.prop()
,
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
Other structural_models:
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
library(PopED) ## find the parameters that are needed to define in the structural model ff.PK.1.comp.oral.md.KE ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ ## -- parameter definition function parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), KE=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU=a[2]) return( parameters ) } ## -- Define design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.md.KE, fg_fun=sfg, fError_fun=feps.add.prop, groupsize=20, m=2, sigma=c(0.04,5e-6), bpop=c(V=72.8,KA=0.25,KE=3.75/72.8,Favail=0.9), d=c(V=0.09,KA=0.09,KE=0.25^2), notfixed_bpop=c(1,1,1,0), notfixed_sigma=c(0,0), xt=c( 1,2,8,240,245), minxt=c(0,0,0,240,240), maxxt=c(10,10,10,248,248), a=cbind(c(20,40),c(24,24)), bUseGrouped_xt=1, maxa=c(200,40), mina=c(0,2)) ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
library(PopED) ## find the parameters that are needed to define in the structural model ff.PK.1.comp.oral.md.KE ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ ## -- parameter definition function parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), KE=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU=a[2]) return( parameters ) } ## -- Define design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.md.KE, fg_fun=sfg, fError_fun=feps.add.prop, groupsize=20, m=2, sigma=c(0.04,5e-6), bpop=c(V=72.8,KA=0.25,KE=3.75/72.8,Favail=0.9), d=c(V=0.09,KA=0.09,KE=0.25^2), notfixed_bpop=c(1,1,1,0), notfixed_sigma=c(0,0), xt=c( 1,2,8,240,245), minxt=c(0,0,0,240,240), maxxt=c(10,10,10,248,248), a=cbind(c(20,40),c(24,24)), bUseGrouped_xt=1, maxa=c(200,40), mina=c(0,2)) ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
This is a structural model function that encodes a model that is
one-compartment, oral absorption, single bolus dose, parameterized using CL.
The function is suitable for input to the create.poped.database
function using the
ff_fun
or ff_file
argument.
ff.PK.1.comp.oral.sd.CL(model_switch, xt, parameters, poped.db)
ff.PK.1.comp.oral.sd.CL(model_switch, xt, parameters, poped.db)
model_switch |
a vector of values, the same size as |
xt |
a vector of independent variable values (often time). |
parameters |
A named list of parameter values. |
poped.db |
a poped database. This can be used to extract information that may be needed in the model file. |
A list consisting of:
y the values of the model at the specified points.
poped.db A (potentially modified) poped database.
Other models:
feps.add()
,
feps.add.prop()
,
feps.prop()
,
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
Other structural_models:
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
This is a structural model function that encodes a model that is
one-compartment, oral absorption, single bolus dose, parameterized using KE.
The function is suitable for input to the create.poped.database
function using the
ff_fun
or ff_file
argument.
ff.PK.1.comp.oral.sd.KE(model_switch, xt, parameters, poped.db)
ff.PK.1.comp.oral.sd.KE(model_switch, xt, parameters, poped.db)
model_switch |
a vector of values, the same size as |
xt |
a vector of independent variable values (often time). |
parameters |
A named list of parameter values. |
poped.db |
a poped database. This can be used to extract information that may be needed in the model file. |
A list consisting of:
y the values of the model at the specified points.
poped.db A (potentially modified) poped database.
Other models:
feps.add()
,
feps.add.prop()
,
feps.prop()
,
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
Other structural_models:
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.KE ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(KE=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.KE, fg_fun=sfg, fError_fun=feps.prop, bpop=c(KE=0.15/8, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(KE=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.KE ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(KE=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.KE, fg_fun=sfg, fError_fun=feps.prop, bpop=c(KE=0.15/8, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(KE=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## create plot of model without variability plot_model_prediction(poped.db) ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
This is a structural model function that encodes the model described above.
The function is suitable for input to the create.poped.database
function using the
ff_fun
or ff_file
argument.
ff.PKPD.1.comp.oral.md.CL.imax(model_switch, xt, parameters, poped.db)
ff.PKPD.1.comp.oral.md.CL.imax(model_switch, xt, parameters, poped.db)
model_switch |
a vector of values, the same size as |
xt |
a vector of independent variable values (often time). |
parameters |
A named list of parameter values. |
poped.db |
a poped database. This can be used to extract information that may be needed in the model file. |
A list consisting of:
y the values of the model at the specified points.
poped.db A (potentially modified) poped database.
Other models:
feps.add()
,
feps.add.prop()
,
feps.prop()
,
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.sd.CL.emax()
Other structural_models:
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.sd.CL.emax()
library(PopED) ## find the parameters that are needed to define from the structural model ff.PKPD.1.comp.oral.md.CL.imax ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ ## -- parameter definition function parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), CL=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU = a[2], E0=bpop[5]*exp(b[4]), IMAX=bpop[6], IC50=bpop[7]) return( parameters ) } feps <- function(model_switch,xt,parameters,epsi,poped.db){ ## -- Residual Error function returnArgs <- do.call(poped.db$model$ff_pointer,list(model_switch,xt,parameters,poped.db)) y <- returnArgs[[1]] poped.db <- returnArgs[[2]] MS <- model_switch pk.dv <- y*(1+epsi[,1])+epsi[,2] pd.dv <- y*(1+epsi[,3])+epsi[,4] y[MS==1] = pk.dv[MS==1] y[MS==2] = pd.dv[MS==2] return(list( y= y,poped.db =poped.db )) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PKPD.1.comp.oral.md.CL.imax, fError_fun=feps, fg_fun=sfg, groupsize=20, m=3, bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9, E0=1120,IMAX=0.807,IC50=0.0993), notfixed_bpop=c(1,1,1,0,1,1,1), d=c(V=0.09,KA=0.09,CL=0.25^2,E0=0.09), sigma=c(0.04,5e-6,0.09,100), notfixed_sigma=c(0,0,0,0), xt=c( 1,2,8,240,240,1,2,8,240,240), minxt=c(0,0,0,240,240,0,0,0,240,240), maxxt=c(10,10,10,248,248,10,10,10,248,248), G_xt=c(1,2,3,4,5,1,2,3,4,5), model_switch=c(1,1,1,1,1,2,2,2,2,2), a=cbind(c(20,40,0),c(24,24,24)), bUseGrouped_xt=1, ourzero=0, maxa=c(200,40), mina=c(0,2)) ## create plot of model without variability plot_model_prediction(poped.db,facet_scales="free") ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
library(PopED) ## find the parameters that are needed to define from the structural model ff.PKPD.1.comp.oral.md.CL.imax ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ ## -- parameter definition function parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), CL=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU = a[2], E0=bpop[5]*exp(b[4]), IMAX=bpop[6], IC50=bpop[7]) return( parameters ) } feps <- function(model_switch,xt,parameters,epsi,poped.db){ ## -- Residual Error function returnArgs <- do.call(poped.db$model$ff_pointer,list(model_switch,xt,parameters,poped.db)) y <- returnArgs[[1]] poped.db <- returnArgs[[2]] MS <- model_switch pk.dv <- y*(1+epsi[,1])+epsi[,2] pd.dv <- y*(1+epsi[,3])+epsi[,4] y[MS==1] = pk.dv[MS==1] y[MS==2] = pd.dv[MS==2] return(list( y= y,poped.db =poped.db )) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PKPD.1.comp.oral.md.CL.imax, fError_fun=feps, fg_fun=sfg, groupsize=20, m=3, bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9, E0=1120,IMAX=0.807,IC50=0.0993), notfixed_bpop=c(1,1,1,0,1,1,1), d=c(V=0.09,KA=0.09,CL=0.25^2,E0=0.09), sigma=c(0.04,5e-6,0.09,100), notfixed_sigma=c(0,0,0,0), xt=c( 1,2,8,240,240,1,2,8,240,240), minxt=c(0,0,0,240,240,0,0,0,240,240), maxxt=c(10,10,10,248,248,10,10,10,248,248), G_xt=c(1,2,3,4,5,1,2,3,4,5), model_switch=c(1,1,1,1,1,2,2,2,2,2), a=cbind(c(20,40,0),c(24,24,24)), bUseGrouped_xt=1, ourzero=0, maxa=c(200,40), mina=c(0,2)) ## create plot of model without variability plot_model_prediction(poped.db,facet_scales="free") ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
This is a structural model function that encodes the model described above.
The function is suitable for input to the create.poped.database
function using the
ff_fun
or ff_file
argument.
ff.PKPD.1.comp.sd.CL.emax(model_switch, xt, parameters, poped.db)
ff.PKPD.1.comp.sd.CL.emax(model_switch, xt, parameters, poped.db)
model_switch |
a vector of values, the same size as |
xt |
a vector of independent variable values (often time). |
parameters |
A named list of parameter values. |
poped.db |
a poped database. This can be used to extract information that may be needed in the model file. |
A list consisting of:
y the values of the model at the specified points.
poped.db A (potentially modified) poped database.
Other models:
feps.add()
,
feps.add.prop()
,
feps.prop()
,
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
Other structural_models:
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
library(PopED) ## find the parameters that are needed to define from the structural model ff.PKPD.1.comp.sd.CL.emax ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ ## -- parameter definition function parameters=c( CL=bpop[1]*exp(b[1]) , V=bpop[2]*exp(b[2]) , E0=bpop[3]*exp(b[3]) , EMAX=bpop[4]*exp(b[4]) , EC50=bpop[5]*exp(b[5]) , DOSE=a[1] ) return( parameters ) } feps <- function(model_switch,xt,parameters,epsi,poped.db){ ## -- Residual Error function ## -- Proportional PK + additive PD returnArgs <- do.call(poped.db$model$ff_pointer,list(model_switch,xt,parameters,poped.db)) y <- returnArgs[[1]] poped.db <- returnArgs[[2]] MS <- model_switch prop.err <- y*(1+epsi[,1]) add.err <- y+epsi[,2] y[MS==1] = prop.err[MS==1] y[MS==2] = add.err[MS==2] return(list( y= y,poped.db =poped.db )) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PKPD.1.comp.sd.CL.emax, fError_fun=feps, fg_fun=sfg, groupsize=20, m=3, sigma=diag(c(0.15,0.15)), bpop=c(CL=0.5,V=0.2,E0=1,EMAX=1,EC50=1), d=c(CL=0.01,V=0.01,E0=0.01,EMAX=0.01,EC50=0.01), xt=c( 0.33,0.66,0.9,5,0.1,1,2,5), model_switch=c( 1,1,1,1,2,2,2,2), minxt=0, maxxt=5, a=rbind(2.75,5,10), bUseGrouped_xt=1, maxa=10, mina=0.1) ## create plot of model without variability plot_model_prediction(poped.db,facet_scales="free") ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
library(PopED) ## find the parameters that are needed to define from the structural model ff.PKPD.1.comp.sd.CL.emax ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ ## -- parameter definition function parameters=c( CL=bpop[1]*exp(b[1]) , V=bpop[2]*exp(b[2]) , E0=bpop[3]*exp(b[3]) , EMAX=bpop[4]*exp(b[4]) , EC50=bpop[5]*exp(b[5]) , DOSE=a[1] ) return( parameters ) } feps <- function(model_switch,xt,parameters,epsi,poped.db){ ## -- Residual Error function ## -- Proportional PK + additive PD returnArgs <- do.call(poped.db$model$ff_pointer,list(model_switch,xt,parameters,poped.db)) y <- returnArgs[[1]] poped.db <- returnArgs[[2]] MS <- model_switch prop.err <- y*(1+epsi[,1]) add.err <- y+epsi[,2] y[MS==1] = prop.err[MS==1] y[MS==2] = add.err[MS==2] return(list( y= y,poped.db =poped.db )) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PKPD.1.comp.sd.CL.emax, fError_fun=feps, fg_fun=sfg, groupsize=20, m=3, sigma=diag(c(0.15,0.15)), bpop=c(CL=0.5,V=0.2,E0=1,EMAX=1,EC50=1), d=c(CL=0.01,V=0.01,E0=0.01,EMAX=0.01,EC50=0.01), xt=c( 0.33,0.66,0.9,5,0.1,1,2,5), model_switch=c( 1,1,1,1,2,2,2,2), minxt=0, maxxt=5, a=rbind(2.75,5,10), bUseGrouped_xt=1, maxa=10, mina=0.1) ## create plot of model without variability plot_model_prediction(poped.db,facet_scales="free") ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM det(FIM) get_rse(FIM,poped.db)
This function computes the expected relative standard errors of a model given a design and a previously computed FIM.
get_rse( fim, poped.db, bpop = poped.db$parameters$bpop[, 2], d = poped.db$parameters$d[, 2], docc = poped.db$parameters$docc, sigma = poped.db$parameters$sigma, use_percent = TRUE, fim.calc.type = poped.db$settings$iFIMCalculationType, prior_fim = poped.db$settings$prior_fim, ... )
get_rse( fim, poped.db, bpop = poped.db$parameters$bpop[, 2], d = poped.db$parameters$d[, 2], docc = poped.db$parameters$docc, sigma = poped.db$parameters$sigma, use_percent = TRUE, fim.calc.type = poped.db$settings$iFIMCalculationType, prior_fim = poped.db$settings$prior_fim, ... )
fim |
A Fisher Information Matrix (FIM). |
poped.db |
A PopED database. |
bpop |
A vector containing the values of the fixed effects used to compute the |
d |
A vector containing the values of the diagonals of the between subject variability matrix. |
docc |
Matrix defining the IOV, the IOV variances and the IOV distribution as for d and bpop. |
sigma |
Matrix defining the variances can covariances of the residual variability terms of the model.
can also just supply the diagonal parameter values (variances) as a |
use_percent |
Should RSE be reported as percent? |
fim.calc.type |
The method used for calculating the FIM. Potential values:
|
prior_fim |
A prior FIM to be added to the |
... |
Additional arguments passed to |
A named list of RSE values. If the estimated parameter is assumed to be zero then for that parameter the standard error is returned.
Other evaluate_design:
evaluate.fim()
,
evaluate_design()
,
evaluate_power()
,
model_prediction()
,
plot_efficiency_of_windows()
,
plot_model_prediction()
## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun = ff.PK.1.comp.oral.sd.CL, fg_fun = sfg, fError_fun = feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), # notfixed_bpop=c(1,1,1,0), notfixed_bpop=c(CL=1,V=1,KA=1,Favail=0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## evaluate initial design with the reduced FIM FIM.1 <- evaluate.fim(poped.db) FIM.1 det(FIM.1) det(FIM.1)^(1/7) get_rse(FIM.1,poped.db) ## evaluate initial design with the full FIM FIM.0 <- evaluate.fim(poped.db,fim.calc.type=0) FIM.0 det(FIM.0) det(FIM.0)^(1/7) get_rse(FIM.0,poped.db) ## evaluate initial design with the reduced FIM ## computing all derivatives with respect to the ## standard deviation of the residual unexplained variation FIM.4 <- evaluate.fim(poped.db,fim.calc.type=4) FIM.4 det(FIM.4) get_rse(FIM.4,poped.db,fim.calc.type=4) ## evaluate initial design with the full FIM with A,B,C matricies ## should give same answer as fim.calc.type=0 FIM.5 <- evaluate.fim(poped.db,fim.calc.type=5) FIM.5 det(FIM.5) get_rse(FIM.5,poped.db,fim.calc.type=5) ## evaluate initial design with the reduced FIM with ## A,B,C matricies and derivative of variance ## should give same answer as fim.calc.type=1 (default) FIM.7 <- evaluate.fim(poped.db,fim.calc.type=7) FIM.7 det(FIM.7) get_rse(FIM.7,poped.db,fim.calc.type=7) ## evaluate FIM and rse with prior FIM.1 poped.db.prior = create.poped.database(poped.db, prior_fim = FIM.1) FIM.1.prior <- evaluate.fim(poped.db.prior) all.equal(FIM.1.prior,FIM.1) # the FIM is only computed from the design in the poped.db get_rse(FIM.1.prior,poped.db.prior) # the RSE is computed with the prior information
## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun = ff.PK.1.comp.oral.sd.CL, fg_fun = sfg, fError_fun = feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), # notfixed_bpop=c(1,1,1,0), notfixed_bpop=c(CL=1,V=1,KA=1,Favail=0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## evaluate initial design with the reduced FIM FIM.1 <- evaluate.fim(poped.db) FIM.1 det(FIM.1) det(FIM.1)^(1/7) get_rse(FIM.1,poped.db) ## evaluate initial design with the full FIM FIM.0 <- evaluate.fim(poped.db,fim.calc.type=0) FIM.0 det(FIM.0) det(FIM.0)^(1/7) get_rse(FIM.0,poped.db) ## evaluate initial design with the reduced FIM ## computing all derivatives with respect to the ## standard deviation of the residual unexplained variation FIM.4 <- evaluate.fim(poped.db,fim.calc.type=4) FIM.4 det(FIM.4) get_rse(FIM.4,poped.db,fim.calc.type=4) ## evaluate initial design with the full FIM with A,B,C matricies ## should give same answer as fim.calc.type=0 FIM.5 <- evaluate.fim(poped.db,fim.calc.type=5) FIM.5 det(FIM.5) get_rse(FIM.5,poped.db,fim.calc.type=5) ## evaluate initial design with the reduced FIM with ## A,B,C matricies and derivative of variance ## should give same answer as fim.calc.type=1 (default) FIM.7 <- evaluate.fim(poped.db,fim.calc.type=7) FIM.7 det(FIM.7) get_rse(FIM.7,poped.db,fim.calc.type=7) ## evaluate FIM and rse with prior FIM.1 poped.db.prior = create.poped.database(poped.db, prior_fim = FIM.1) FIM.1.prior <- evaluate.fim(poped.db.prior) all.equal(FIM.1.prior,FIM.1) # the FIM is only computed from the design in the poped.db get_rse(FIM.1.prior,poped.db.prior) # the RSE is computed with the prior information
Optimize the objective function for D-family, E-family and Laplace approximated ED designs. Right now there is only one optimization algorithm used in this function
Adaptive random search. See RS_opt
.
This function takes information from the PopED database supplied as an argument. The PopED database supplies information about the the model, parameters, design and methods to use. Some of the arguments coming from the PopED database can be overwritten; if they are supplied then they are used instead of the arguments from the PopED database.
LEDoptim( poped.db, model_switch = NULL, ni = NULL, xt = NULL, x = NULL, a = NULL, bpopdescr = NULL, ddescr = NULL, maxxt = NULL, minxt = NULL, maxa = NULL, mina = NULL, ofv_init = 0, fim_init = 0, trflag = TRUE, header_flag = TRUE, footer_flag = TRUE, opt_xt = poped.db$settings$optsw[2], opt_a = poped.db$settings$optsw[4], opt_x = poped.db$settings$optsw[3], out_file = NULL, d_switch = FALSE, use_laplace = T, laplace.fim = FALSE, use_RS = poped.db$settings$bUseRandomSearch, ... )
LEDoptim( poped.db, model_switch = NULL, ni = NULL, xt = NULL, x = NULL, a = NULL, bpopdescr = NULL, ddescr = NULL, maxxt = NULL, minxt = NULL, maxa = NULL, mina = NULL, ofv_init = 0, fim_init = 0, trflag = TRUE, header_flag = TRUE, footer_flag = TRUE, opt_xt = poped.db$settings$optsw[2], opt_a = poped.db$settings$optsw[4], opt_x = poped.db$settings$optsw[3], out_file = NULL, d_switch = FALSE, use_laplace = T, laplace.fim = FALSE, use_RS = poped.db$settings$bUseRandomSearch, ... )
poped.db |
A PopED database. |
model_switch |
A matrix that is the same size as xt, specifying which model each sample belongs to. |
ni |
A vector of the number of samples in each group. |
xt |
A matrix of sample times. Each row is a vector of sample times for a group. |
x |
A matrix for the discrete design variables. Each row is a group. |
a |
A matrix of covariates. Each row is a group. |
bpopdescr |
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
|
ddescr |
Matrix defining the diagonals of the IIV (same logic as for
the |
maxxt |
Matrix or single value defining the maximum value for each xt sample. If a single value is supplied then all xt values are given the same maximum value. |
minxt |
Matrix or single value defining the minimum value for each xt sample. If a single value is supplied then all xt values are given the same minimum value |
maxa |
Vector defining the max value for each covariate. If a single value is supplied then all a values are given the same max value |
mina |
Vector defining the min value for each covariate. If a single value is supplied then all a values are given the same max value |
ofv_init |
The initial OFV. If set to zero then it is computed. |
fim_init |
The initial value of the FIM. If set to zero then it is computed. |
trflag |
Should the optimization be output to the screen and to a file? |
header_flag |
Should the header text be printed out? |
footer_flag |
Should the footer text be printed out? |
opt_xt |
Should the sample times be optimized? |
opt_a |
Should the continuous design variables be optimized? |
opt_x |
Should the discrete design variables be optimized? |
out_file |
Which file should the output be directed to? A string, a file handle using
|
d_switch |
D-family design (1) or ED-family design (0) (with or without parameter uncertainty) |
use_laplace |
Should the Laplace method be used in calculating the expectation of the OFV? |
laplace.fim |
Should an E(FIM) be calculated when computing the Laplace approximated E(OFV). Typically the FIM does not need to be computed and, if desired, this calculation is done using the standard MC integration technique, so can be slow. |
use_RS |
should the function use a random search algorithm? |
... |
arguments passed to |
Other Optimize:
Doptim()
,
RS_opt()
,
a_line_search()
,
bfgsb_min()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samoples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) ############# END ################### ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### # warfarin ed model ## Not run: LEDoptim(poped.db) LEDoptim(poped.db,opt_xt=T,rsit=10) LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE) LEDoptim(poped.db,opt_xt=T,rsit=10,laplace.fim=TRUE) LEDoptim(poped.db,opt_xt=T,rsit=10,use_laplace=FALSE) ## testing header and footer LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, out_file="foobar.txt") ff <- LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, trflag=FALSE) LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, header_flag=FALSE) LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, out_file="") LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, footer_flag=FALSE) LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, footer_flag=FALSE, header_flag=FALSE) LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, footer_flag=FALSE, header_flag=FALSE,out_file="foobar.txt") LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, footer_flag=FALSE, header_flag=FALSE,out_file="") ## End(Not run)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samoples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) ############# END ################### ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### # warfarin ed model ## Not run: LEDoptim(poped.db) LEDoptim(poped.db,opt_xt=T,rsit=10) LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE) LEDoptim(poped.db,opt_xt=T,rsit=10,laplace.fim=TRUE) LEDoptim(poped.db,opt_xt=T,rsit=10,use_laplace=FALSE) ## testing header and footer LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, out_file="foobar.txt") ff <- LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, trflag=FALSE) LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, header_flag=FALSE) LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, out_file="") LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, footer_flag=FALSE) LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, footer_flag=FALSE, header_flag=FALSE) LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, footer_flag=FALSE, header_flag=FALSE,out_file="foobar.txt") LEDoptim(poped.db,opt_xt=T,rsit=10,d_switch=TRUE, footer_flag=FALSE, header_flag=FALSE,out_file="") ## End(Not run)
Function computes the monte-carlo mean of a function by varying the parameter inputs to the function
mc_mean( ofv_fcn, poped.db, bpopdescr = poped.db$parameters$bpop, ddescr = poped.db$parameters$d, doccdescr = poped.db$parameters$d, user_distribution_pointer = poped.db$model$user_distribution_pointer, ED_samp_size = poped.db$settings$ED_samp_size, bLHS = poped.db$settings$bLHS, ... )
mc_mean( ofv_fcn, poped.db, bpopdescr = poped.db$parameters$bpop, ddescr = poped.db$parameters$d, doccdescr = poped.db$parameters$d, user_distribution_pointer = poped.db$model$user_distribution_pointer, ED_samp_size = poped.db$settings$ED_samp_size, bLHS = poped.db$settings$bLHS, ... )
ofv_fcn |
A function with poped.db as the first input |
poped.db |
A PopED database. |
bpopdescr |
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
|
ddescr |
Matrix defining the diagonals of the IIV (same logic as for
the |
doccdescr |
Matrix defining the IOV. per row (row number = parameter_number) we should have:
|
user_distribution_pointer |
Function name for user defined distributions for E-family designs |
ED_samp_size |
Sample size for E-family sampling |
bLHS |
How to sample from distributions in E-family calculations. 0=Random Sampling, 1=LatinHyperCube – |
... |
Other arguments passed to the function. |
The mean of the function evaluated at different parameter values.
Created for back compatibility with older versions of ggplot, and so that PopED does not have to load ggplot when started.
median_hilow_poped(x, ...)
median_hilow_poped(x, ...)
x |
A numeric vector |
... |
Additional arguments passed to Hmisc's smedian.hilow function or ggplot2's median_hilow function, depending on your version of ggplot. |
Function generates a data frame of model predictions for the typical value in the population, individual predictions and data predictions. The function can also be used to generate datasets without predictions using the design specified in the arguments.
model_prediction( poped.db = NULL, design = list(xt = poped.db$design[["xt"]], groupsize = poped.db$design$groupsize, m = poped.db$design[["m"]], x = poped.db$design[["x"]], a = poped.db$design[["a"]], ni = poped.db$design$ni, model_switch = poped.db$design$model_switch), model = list(fg_pointer = poped.db$model$fg_pointer, ff_pointer = poped.db$model$ff_pointer, ferror_pointer = poped.db$model$ferror_pointer), parameters = list(docc = poped.db$parameters$docc, d = poped.db$parameters$d, bpop = poped.db$parameters$bpop, covd = poped.db$parameters$covd, covdocc = poped.db$parameters$covdocc, sigma = poped.db$parameters$sigma), IPRED = FALSE, DV = FALSE, dosing = NULL, predictions = NULL, filename = NULL, models_to_use = "all", model_num_points = NULL, model_minxt = NULL, model_maxxt = NULL, include_sample_times = T, groups_to_use = "all", include_a = TRUE, include_x = TRUE, manipulation = NULL, PI = FALSE, PI_conf_level = 0.95, PI_ln_dist = TRUE )
model_prediction( poped.db = NULL, design = list(xt = poped.db$design[["xt"]], groupsize = poped.db$design$groupsize, m = poped.db$design[["m"]], x = poped.db$design[["x"]], a = poped.db$design[["a"]], ni = poped.db$design$ni, model_switch = poped.db$design$model_switch), model = list(fg_pointer = poped.db$model$fg_pointer, ff_pointer = poped.db$model$ff_pointer, ferror_pointer = poped.db$model$ferror_pointer), parameters = list(docc = poped.db$parameters$docc, d = poped.db$parameters$d, bpop = poped.db$parameters$bpop, covd = poped.db$parameters$covd, covdocc = poped.db$parameters$covdocc, sigma = poped.db$parameters$sigma), IPRED = FALSE, DV = FALSE, dosing = NULL, predictions = NULL, filename = NULL, models_to_use = "all", model_num_points = NULL, model_minxt = NULL, model_maxxt = NULL, include_sample_times = T, groups_to_use = "all", include_a = TRUE, include_x = TRUE, manipulation = NULL, PI = FALSE, PI_conf_level = 0.95, PI_ln_dist = TRUE )
poped.db |
A PopED database created by |
design |
A list that is passed as arguments to the function |
model |
A list containing the model elements to use for the predictions |
parameters |
A list of parameters to use in the model predictions. |
IPRED |
Should we simulate individual predictions? |
DV |
should we simulate observations? |
dosing |
A list of lists that adds dosing records to the data frame (Each inner list corresponding to a group in the design). |
predictions |
Should the resulting data frame have predictions? Either |
filename |
A filename that the data frame should be written to in comma separate value (csv) format. |
models_to_use |
Which model numbers should we use?
Model numbers are defined in |
model_num_points |
How many extra observation rows should be created in the data frame for each group or individual
per model. If used then the points are placed evenly between |
model_minxt |
The minimum time value for extra observation rows indicated by |
model_maxxt |
The minimum time value for extra observation rows indicated by |
include_sample_times |
Should observations rows in the output data frame include the times indicated in the input design? |
groups_to_use |
Which groups should we include in the output data frame?Allowed values are |
include_a |
Should we include the continuous design variables in the output? |
include_x |
Should we include the discrete design variables in the output? |
manipulation |
A list of one or more |
PI |
Compute prediction intervals for the data given the model. Predictions are based on first-order approximations to the model variance and a log-normality assumption of that variance (by default), if all predictions are positive, otherwise a normal distribution is assumed. |
PI_conf_level |
The confidence level for the prediction interval computed. |
PI_ln_dist |
Should the PI calculation be done assuming log-normal or a normal distribution. TRUE is the default and indicates a log-normal distribution. If any of the PRED values from the model are negative then a normal distribution is assumed. |
A dataframe containing a design and (potentially) simulated data with some dense grid of samples and/or based on the input design.
Other evaluate_design:
evaluate.fim()
,
evaluate_design()
,
evaluate_power()
,
get_rse()
,
plot_efficiency_of_windows()
,
plot_model_prediction()
Other Simulation:
plot_efficiency_of_windows()
,
plot_model_prediction()
## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## data frame with model predictions df_1 <- model_prediction(poped.db) head(df_1,n=20) ## data frame with variability df_2 <- model_prediction(poped.db,DV=TRUE) head(df_2,n=20) ## data frame with variability (only IPRED, no DV) df_3 <- model_prediction(poped.db,IPRED=TRUE) head(df_3,n=20) ## data frame with model predictions, no continuous design variables in data frame df_4 <- model_prediction(poped.db,include_a = FALSE) head(df_4,n=20) ## -- 2 groups poped.db.2 <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=rbind(3,3), m=2, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=rbind(70,50)) df_5 <- model_prediction(poped.db.2,DV=TRUE) head(df_5,n=20) ## without a poped database, just describing the design ## Useful for creating datasets for use in other software (like NONMEM) design_1 <- list( xt=c( 0.5,1,2,6,24,36,72,120), m=2, groupsize=3) design_2 <- list( xt=c( 0.5,1,2,6,24,36,72,120), m=2, groupsize=3, a=c(WT=70,AGE=50)) design_3 <- list( xt=c( 0.5,1,2,6,24,36,72,120), m=2, groupsize=3, a=list(c(WT=70,AGE=50),c(AGE=45,WT=60))) (df_6 <- model_prediction(design=design_1)) (df_7 <- model_prediction(design=design_2)) (df_8 <- model_prediction(design=design_3)) (df_9 <- model_prediction(design=design_3,DV=TRUE)) # generate random deviations in WT for each individual df_10 <- model_prediction(design=design_3,DV=TRUE, manipulation=expression({for(id in unique(ID)) WT[ID==id] = rnorm(1,WT[ID==id],WT[ID==id]*0.1);id <- NULL})) head(df_10,n=20) # generate random deviations in WT and AGE for each individual df_11 <- model_prediction(design=design_3,DV=TRUE, manipulation=list( expression(for(id in unique(ID)) WT[ID==id] = rnorm(1,WT[ID==id],WT[ID==id]*0.1)), expression(for(id in unique(ID)) AGE[ID==id] = rnorm(1,AGE[ID==id],AGE[ID==id]*0.2)), expression(id <- NULL) )) head(df_10,n=20) ## create dosing rows dosing_1 <- list(list(AMT=1000,RATE=NA,Time=0.5),list(AMT=3000,RATE=NA,Time=0.5)) dosing_2 <- list(list(AMT=1000,RATE=NA,Time=0.5)) dosing_3 <- list(list(AMT=1000,Time=0.5)) dosing_4 <- list(list(AMT=c(1000,20),Time=c(0.5,10))) # multiple dosing (df_12 <- model_prediction(design=design_3,DV=TRUE,dosing=dosing_1)) (df_13 <- model_prediction(design=design_3,DV=TRUE,dosing=dosing_2)) (df_14 <- model_prediction(design=design_3,DV=TRUE,dosing=dosing_3)) (df_15 <- model_prediction(design=design_3,DV=TRUE,dosing=dosing_4)) model_prediction(design=design_3,DV=TRUE,dosing=dosing_4,model_num_points = 10) model_prediction(design=design_3,DV=TRUE,dosing=dosing_4,model_num_points = 10,model_minxt=20) design_4 <- list( xt=c( 0.5,1,2,6,24,36,72,120), model_switch=c(1,1,1,1,2,2,2,2), m=2, groupsize=3, a=list(c(WT=70,AGE=50),c(AGE=45,WT=60))) model_prediction(design=design_4,DV=TRUE,dosing=dosing_4) model_prediction(design=design_4,DV=TRUE,dosing=dosing_4,model_num_points = 10) model_prediction(design=design_4,DV=TRUE,dosing=dosing_4,model_num_points = 10, model_minxt=10,model_maxxt=100) model_prediction(design=design_4,DV=TRUE,dosing=dosing_4,model_num_points = 10, model_minxt=c(20,20),model_maxxt=c(100,100)) model_prediction(design=design_4,DV=TRUE,dosing=dosing_4,model_num_points = c(10,10), model_minxt=c(20,20),model_maxxt=c(100,100))
## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## data frame with model predictions df_1 <- model_prediction(poped.db) head(df_1,n=20) ## data frame with variability df_2 <- model_prediction(poped.db,DV=TRUE) head(df_2,n=20) ## data frame with variability (only IPRED, no DV) df_3 <- model_prediction(poped.db,IPRED=TRUE) head(df_3,n=20) ## data frame with model predictions, no continuous design variables in data frame df_4 <- model_prediction(poped.db,include_a = FALSE) head(df_4,n=20) ## -- 2 groups poped.db.2 <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=rbind(3,3), m=2, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=rbind(70,50)) df_5 <- model_prediction(poped.db.2,DV=TRUE) head(df_5,n=20) ## without a poped database, just describing the design ## Useful for creating datasets for use in other software (like NONMEM) design_1 <- list( xt=c( 0.5,1,2,6,24,36,72,120), m=2, groupsize=3) design_2 <- list( xt=c( 0.5,1,2,6,24,36,72,120), m=2, groupsize=3, a=c(WT=70,AGE=50)) design_3 <- list( xt=c( 0.5,1,2,6,24,36,72,120), m=2, groupsize=3, a=list(c(WT=70,AGE=50),c(AGE=45,WT=60))) (df_6 <- model_prediction(design=design_1)) (df_7 <- model_prediction(design=design_2)) (df_8 <- model_prediction(design=design_3)) (df_9 <- model_prediction(design=design_3,DV=TRUE)) # generate random deviations in WT for each individual df_10 <- model_prediction(design=design_3,DV=TRUE, manipulation=expression({for(id in unique(ID)) WT[ID==id] = rnorm(1,WT[ID==id],WT[ID==id]*0.1);id <- NULL})) head(df_10,n=20) # generate random deviations in WT and AGE for each individual df_11 <- model_prediction(design=design_3,DV=TRUE, manipulation=list( expression(for(id in unique(ID)) WT[ID==id] = rnorm(1,WT[ID==id],WT[ID==id]*0.1)), expression(for(id in unique(ID)) AGE[ID==id] = rnorm(1,AGE[ID==id],AGE[ID==id]*0.2)), expression(id <- NULL) )) head(df_10,n=20) ## create dosing rows dosing_1 <- list(list(AMT=1000,RATE=NA,Time=0.5),list(AMT=3000,RATE=NA,Time=0.5)) dosing_2 <- list(list(AMT=1000,RATE=NA,Time=0.5)) dosing_3 <- list(list(AMT=1000,Time=0.5)) dosing_4 <- list(list(AMT=c(1000,20),Time=c(0.5,10))) # multiple dosing (df_12 <- model_prediction(design=design_3,DV=TRUE,dosing=dosing_1)) (df_13 <- model_prediction(design=design_3,DV=TRUE,dosing=dosing_2)) (df_14 <- model_prediction(design=design_3,DV=TRUE,dosing=dosing_3)) (df_15 <- model_prediction(design=design_3,DV=TRUE,dosing=dosing_4)) model_prediction(design=design_3,DV=TRUE,dosing=dosing_4,model_num_points = 10) model_prediction(design=design_3,DV=TRUE,dosing=dosing_4,model_num_points = 10,model_minxt=20) design_4 <- list( xt=c( 0.5,1,2,6,24,36,72,120), model_switch=c(1,1,1,1,2,2,2,2), m=2, groupsize=3, a=list(c(WT=70,AGE=50),c(AGE=45,WT=60))) model_prediction(design=design_4,DV=TRUE,dosing=dosing_4) model_prediction(design=design_4,DV=TRUE,dosing=dosing_4,model_num_points = 10) model_prediction(design=design_4,DV=TRUE,dosing=dosing_4,model_num_points = 10, model_minxt=10,model_maxxt=100) model_prediction(design=design_4,DV=TRUE,dosing=dosing_4,model_num_points = 10, model_minxt=c(20,20),model_maxxt=c(100,100)) model_prediction(design=design_4,DV=TRUE,dosing=dosing_4,model_num_points = c(10,10), model_minxt=c(20,20),model_maxxt=c(100,100))
Compute a normalized OFV based on the size of the FIM matrix. This value can then be used in
efficiency calculations. This is NOT the OFV used in optimization, see ofv_fim
.
ofv_criterion( ofv_f, num_parameters, poped.db, ofv_calc_type = poped.db$settings$ofv_calc_type )
ofv_criterion( ofv_f, num_parameters, poped.db, ofv_calc_type = poped.db$settings$ofv_calc_type )
ofv_f |
An objective function |
num_parameters |
The number of parameters to use for normalization |
poped.db |
a poped database |
ofv_calc_type |
OFV calculation type for FIM
|
The specified criterion value.
Other FIM:
LinMatrixH()
,
LinMatrixLH()
,
LinMatrixL_occ()
,
calc_ofv_and_fim()
,
ed_laplace_ofv()
,
ed_mftot()
,
efficiency()
,
evaluate.e.ofv.fim()
,
evaluate.fim()
,
gradf_eps()
,
mf3()
,
mf7()
,
mftot()
,
ofv_fim()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### ## evaluate initial design FIM <- evaluate.fim(poped.db) # new name for function needed FIM get_rse(FIM,poped.db) ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=1), length(get_unfixed_params(poped.db)[["all"]]), poped.db, ofv_calc_type=1) # det(FIM) ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=2), length(get_unfixed_params(poped.db)[["all"]]), poped.db, ofv_calc_type=2) ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=4), length(get_unfixed_params(poped.db)[["all"]]), poped.db, ofv_calc_type=4) ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=6), length(get_unfixed_params(poped.db)[["all"]]), poped.db, ofv_calc_type=6) ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=7), length(get_unfixed_params(poped.db)[["all"]]), poped.db, ofv_calc_type=7)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### ## evaluate initial design FIM <- evaluate.fim(poped.db) # new name for function needed FIM get_rse(FIM,poped.db) ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=1), length(get_unfixed_params(poped.db)[["all"]]), poped.db, ofv_calc_type=1) # det(FIM) ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=2), length(get_unfixed_params(poped.db)[["all"]]), poped.db, ofv_calc_type=2) ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=4), length(get_unfixed_params(poped.db)[["all"]]), poped.db, ofv_calc_type=4) ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=6), length(get_unfixed_params(poped.db)[["all"]]), poped.db, ofv_calc_type=6) ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=7), length(get_unfixed_params(poped.db)[["all"]]), poped.db, ofv_calc_type=7)
Compute a criterion of the FIM given the model, parameters, design and methods defined in the PopED database.
ofv_fim( fmf, poped.db, ofv_calc_type = poped.db$settings$ofv_calc_type, ds_index = poped.db$parameters$ds_index, use_log = TRUE, ... )
ofv_fim( fmf, poped.db, ofv_calc_type = poped.db$settings$ofv_calc_type, ds_index = poped.db$parameters$ds_index, use_log = TRUE, ... )
fmf |
The FIM |
poped.db |
A poped database |
ofv_calc_type |
OFV calculation type for FIM
|
ds_index |
Ds_index is a vector set to 1 if a parameter is uninteresting, otherwise 0.
size=(1,num unfixed parameters). First unfixed bpop, then unfixed d, then unfixed docc and last unfixed sigma.
Default is the fixed effects being important, everything else not important. Used in conjunction with
|
use_log |
Should the criterion be in the log domain? |
... |
arguments passed to |
The specified criterion value.
Other FIM:
LinMatrixH()
,
LinMatrixLH()
,
LinMatrixL_occ()
,
calc_ofv_and_fim()
,
ed_laplace_ofv()
,
ed_mftot()
,
efficiency()
,
evaluate.e.ofv.fim()
,
evaluate.fim()
,
gradf_eps()
,
mf3()
,
mf7()
,
mftot()
,
ofv_criterion()
Other evaluate_FIM:
calc_ofv_and_fim()
,
evaluate.e.ofv.fim()
,
evaluate.fim()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM get_rse(FIM,poped.db) det(FIM) ofv_fim(FIM,poped.db,ofv_calc_type=1) # det(FIM) ofv_fim(FIM,poped.db,ofv_calc_type=2) # 1/trace_matrix(inv(FIM)) ofv_fim(FIM,poped.db,ofv_calc_type=4) # log(det(FIM)) ofv_fim(FIM,poped.db,ofv_calc_type=6) # Ds with fixed effects as "important" ofv_fim(FIM,poped.db,ofv_calc_type=6, ds_index=c(1,1,1,0,0,0,1,1)) # Ds with random effects as "important" ofv_fim(FIM,poped.db,ofv_calc_type=7) # 1/sum(get_rse(FIM,poped.db,use_percent=FALSE))
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### ## evaluate initial design FIM <- evaluate.fim(poped.db) FIM get_rse(FIM,poped.db) det(FIM) ofv_fim(FIM,poped.db,ofv_calc_type=1) # det(FIM) ofv_fim(FIM,poped.db,ofv_calc_type=2) # 1/trace_matrix(inv(FIM)) ofv_fim(FIM,poped.db,ofv_calc_type=4) # log(det(FIM)) ofv_fim(FIM,poped.db,ofv_calc_type=6) # Ds with fixed effects as "important" ofv_fim(FIM,poped.db,ofv_calc_type=6, ds_index=c(1,1,1,0,0,0,1,1)) # Ds with random effects as "important" ofv_fim(FIM,poped.db,ofv_calc_type=7) # 1/sum(get_rse(FIM,poped.db,use_percent=FALSE))
Create a matrix of ones of size (dim1 x dim2).
ones(dim1, dim2 = NULL)
ones(dim1, dim2 = NULL)
dim1 |
The dimension of the matrix (if square) or the number of rows. |
dim2 |
The number of columns |
A matrix of ones
Other MATLAB:
cell()
,
diag_matlab()
,
feval()
,
fileparts()
,
isempty()
,
rand()
,
randn()
,
size()
,
tic()
,
toc()
,
zeros()
ones(4) ones(3,4)
ones(4) ones(3,4)
Optimize an objective function using an adaptive random search algorithm. The function works for both discrete and continuous optimization parameters and allows for box-constraints and sets of allowed values.
optim_ARS( par, fn, lower = NULL, upper = NULL, allowed_values = NULL, loc_fac = 4, no_bounds_sd = par, iter = 400, iter_adapt = 50, adapt_scale = 1, max_run = 200, trace = TRUE, trace_iter = 5, new_par_max_it = 200, maximize = F, parallel = F, parallel_type = NULL, num_cores = NULL, mrgsolve_model = NULL, seed = round(runif(1, 0, 1e+07)), allow_replicates = TRUE, replicates_index = seq(1, length(par)), generator = NULL, ... )
optim_ARS( par, fn, lower = NULL, upper = NULL, allowed_values = NULL, loc_fac = 4, no_bounds_sd = par, iter = 400, iter_adapt = 50, adapt_scale = 1, max_run = 200, trace = TRUE, trace_iter = 5, new_par_max_it = 200, maximize = F, parallel = F, parallel_type = NULL, num_cores = NULL, mrgsolve_model = NULL, seed = round(runif(1, 0, 1e+07)), allow_replicates = TRUE, replicates_index = seq(1, length(par)), generator = NULL, ... )
par |
A vector of initial values for the parameters to be optimized over. |
fn |
A function to be minimized (or maximized), with first argument the vector of parameters over which minimization is to take place. It should return a scalar result. |
lower |
Lower bounds on the parameters. A vector. |
upper |
Upper bounds on the parameters. A vector. |
allowed_values |
A list containing allowed values for each parameter |
loc_fac |
Locality factor for determining the standard deviation of the sampling distribution around the current
position of the parameters. The initial standard deviation is normally calculated as |
no_bounds_sd |
The standard deviation of the sampling distribution around the current
position of the parameters when there are no upper or lower limits (e.g. when |
iter |
The number of iterations for the algorithm to perform (this is a maximum number, it could be less). |
iter_adapt |
The number of iterations before adapting (shrinking) the parameter search space. |
adapt_scale |
The scale for adapting the size of the sampling distribution. The adaptation of the
standard deviation of the sampling distribution around the current
position of the parameters is done after |
max_run |
The maximum number of iterations to run without a change in the best parameter estimates. |
trace |
Should the algorithm output results intermittently. |
trace_iter |
How many iterations between each update to the screen about the result of the search. |
new_par_max_it |
The algorithm randomly chooses samples based on the current best set of parameters. If when drawing
these samples the new parameter set has already been tested then a new draw is performed. After |
maximize |
Should the function be maximized? Default is to minimize. |
parallel |
Should we use parallel computations? |
parallel_type |
Which type of parallelization should be used?
Can be "snow" or "multicore". "snow" works on Linux-like systems & Windows. "multicore" works only on
Linux-like systems. By default this is chosen for you depending on your operating system.
See |
num_cores |
The number of cores to use in the parallelization. By default is set to the number
output from
|
mrgsolve_model |
If the computations require a mrgsolve model and you
are using the "snow" method then you need to specify the name of the model
object created by |
seed |
The random seed to use in the algorithm, |
allow_replicates |
Should the algorithm allow parameters to have the same value? |
replicates_index |
A vector, the same length as the parameters. If two values are the same in this vector then the parameters may not assume the same value in the optimization. |
generator |
A user-defined function that generates new parameter sets to try in the algorithm. See examples below. |
... |
Additional arguments passed to |
M. Foracchia, A.C. Hooker, P. Vicini and A. Ruggeri, "PopED, a software fir optimal experimental design in population kinetics", Computer Methods and Programs in Biomedicine, 74, 2004.
J. Nyberg, S. Ueckert, E.A. Stroemberg, S. Hennig, M.O. Karlsson and A.C. Hooker, "PopED: An extended, parallelized, nonlinear mixed effects models optimal design tool", Computer Methods and Programs in Biomedicine, 108, 2012.
Other Optimize:
Doptim()
,
LEDoptim()
,
RS_opt()
,
a_line_search()
,
bfgsb_min()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_LS()
,
poped_optim()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
## "wild" function , global minimum at about -15.81515 fw <- function(x) 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80 # optimization with fewer function evaluations compared to SANN res1 <- optim_ARS(50, fw,lower = -50, upper=100) # often not as good performance when upper and lower bounds are poor res2 <- optim_ARS(50, fw, lower=-Inf,upper=Inf) # Only integer values allowed ## Not run: res_int <- optim_ARS(50, fw, allowed_values = seq(-50,100,by=1)) ## End(Not run) ## Not run: #plot of the function and solutions require(graphics) plot(fw, -50, 50, n = 1000, main = "Minimizing 'wild function'") points(-15.81515, fw(-15.81515), pch = 16, col = "red", cex = 1) points(res1$par, res1$ofv, pch = 16, col = "green", cex = 1) points(res2$par, res2$ofv, pch = 16, col = "blue", cex = 1) ## End(Not run) # optim_ARS does not work great for hard to find minima on flat surface: # Rosenbrock Banana function # f(x, y) = (a-x)^2 + b(y-x^2)^2 # global minimum at (x, y)=(a, a^2), where f(x, y)=0. # Usually a = 1 and b = 100. ## Not run: fr <- function(x,a=1,b=100) { x1 <- x[1] x2 <- x[2] b*(x2 - x1*x1)^2 + (a - x1)^2 } res3 <- optim_ARS(c(-1.2,1), fr,lower = -5, upper = 5) # plot the surface x <- seq(-50, 50, length= 30) y <- x f <- function(x,y){apply(cbind(x,y),1,fr)} z <- outer(x, y, f) persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue", ticktype="detailed") -> res points(trans3d(1, 1, 0, pmat = res), col = 2, pch = 16,cex=2) points(trans3d(res3$par[1], res3$par[1], res3$ofv, pmat = res), col = "green", pch = 16,cex=2) ## End(Not run) # box constraints flb <- function(x){ p <- length(x) sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) } ## 25-dimensional box constrained #optim(rep(3, 25), flb,lower = rep(2, 25), upper = rep(4, 25),method = "L-BFGS-B") res_box <- optim_ARS(rep(3, 25), flb,lower = rep(2, 25), upper = rep(4, 25)) ## Combinatorial optimization: Traveling salesman problem eurodistmat <- as.matrix(eurodist) distance <- function(sq) { # Target function sq2 <- embed(sq, 2) sum(eurodistmat[cbind(sq2[,2], sq2[,1])]) } genseq <- function(sq) { # Generate new candidate sequence idx <- seq(2, NROW(eurodistmat)-1) changepoints <- sample(idx, size = 2, replace = FALSE) tmp <- sq[changepoints[1]] sq[changepoints[1]] <- sq[changepoints[2]] sq[changepoints[2]] <- tmp sq } sq <- c(1:nrow(eurodistmat), 1) # Initial sequence: alphabetic res3 <- optim_ARS(sq,distance,generator=genseq) # Near optimum distance around 12842 ## Not run: # plot of initial sequence # rotate for conventional orientation loc <- -cmdscale(eurodist, add = TRUE)$points x <- loc[,1]; y <- loc[,2] s <- seq_len(nrow(eurodistmat)) tspinit <- loc[sq,] plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", main = paste("Initial sequence of traveling salesman problem\n", "Distance =",distance(sq)), axes = FALSE) arrows(tspinit[s,1], tspinit[s,2], tspinit[s+1,1], tspinit[s+1,2], angle = 10, col = "green") text(x, y, labels(eurodist), cex = 0.8) # plot of final sequence from optim_ARS tspres <- loc[res3$par,] plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", main = paste("optim_ARS() 'solving' traveling salesman problem\n", "Distance =",distance(c(1,res3$par,1))),axes = FALSE) arrows(tspres[s,1], tspres[s,2], tspres[s+1,1], tspres[s+1,2], angle = 10, col = "red") text(x, y, labels(eurodist), cex = 0.8) # using optim set.seed(123) # chosen to get a good soln relatively quickly (res4 <- optim(sq, distance, genseq, method = "SANN", control = list(maxit = 30000, temp = 2000, trace = TRUE, REPORT = 500))) tspres <- loc[res4$par,] plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", main = paste("optim() 'solving' traveling salesman problem\n", "Distance =",distance(res4$par)),axes = FALSE) arrows(tspres[s,1], tspres[s,2], tspres[s+1,1], tspres[s+1,2], angle = 10, col = "red") text(x, y, labels(eurodist), cex = 0.8) ## End(Not run) # one-dimensional function ## Not run: f <- function(x) abs(x)+cos(x) res5 <- optim_ARS(-20,f,lower=-20, upper=20) curve(f, -20, 20) abline(v = res5$par, lty = 4,col="green") ## End(Not run) # one-dimensional function f <- function(x) (x^2+x)*cos(x) # -10 < x < 10 res_max <- optim_ARS(0,f,lower=-10, upper=10,maximize=TRUE) # sometimes to local maxima ## Not run: res_min <- optim_ARS(0,f,lower=-10, upper=10) # sometimes to local minima curve(f, -10, 10) abline(v = res_min$par, lty = 4,col="green") abline(v = res_max$par, lty = 4,col="red") ## End(Not run) # two-dimensional Rastrigin function #It has a global minimum at f(x) = f(0) = 0. ## Not run: Rastrigin <- function(x1, x2){ 20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2)) } x1 <- x2 <- seq(-5.12, 5.12, by = 0.1) z <- outer(x1, x2, Rastrigin) res6 <- optim_ARS(c(-4,4),function(x) Rastrigin(x[1], x[2]),lower=-5.12, upper=5.12) # color scale nrz <- nrow(z) ncz <- ncol(z) jet.colors <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")) # Generate the desired number of colors from this palette nbcol <- 100 color <- jet.colors(nbcol) # Compute the z-value at the facet centres zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz] # Recode facet z-values into color indices facetcol <- cut(zfacet, nbcol) persp(x1, x2, z, col = color[facetcol], phi = 30, theta = 30) filled.contour(x1, x2, z, color.palette = jet.colors) ## End(Not run) ## Parallel computation ## works better when each evaluation takes longer ## here we have added extra time to the computations ## just to show that it works ## Not run: res7 <- optim_ARS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12) res8 <- optim_ARS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12,parallel = T) res9 <- optim_ARS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12,parallel = T,parallel_type = "snow") ## End(Not run)
## "wild" function , global minimum at about -15.81515 fw <- function(x) 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80 # optimization with fewer function evaluations compared to SANN res1 <- optim_ARS(50, fw,lower = -50, upper=100) # often not as good performance when upper and lower bounds are poor res2 <- optim_ARS(50, fw, lower=-Inf,upper=Inf) # Only integer values allowed ## Not run: res_int <- optim_ARS(50, fw, allowed_values = seq(-50,100,by=1)) ## End(Not run) ## Not run: #plot of the function and solutions require(graphics) plot(fw, -50, 50, n = 1000, main = "Minimizing 'wild function'") points(-15.81515, fw(-15.81515), pch = 16, col = "red", cex = 1) points(res1$par, res1$ofv, pch = 16, col = "green", cex = 1) points(res2$par, res2$ofv, pch = 16, col = "blue", cex = 1) ## End(Not run) # optim_ARS does not work great for hard to find minima on flat surface: # Rosenbrock Banana function # f(x, y) = (a-x)^2 + b(y-x^2)^2 # global minimum at (x, y)=(a, a^2), where f(x, y)=0. # Usually a = 1 and b = 100. ## Not run: fr <- function(x,a=1,b=100) { x1 <- x[1] x2 <- x[2] b*(x2 - x1*x1)^2 + (a - x1)^2 } res3 <- optim_ARS(c(-1.2,1), fr,lower = -5, upper = 5) # plot the surface x <- seq(-50, 50, length= 30) y <- x f <- function(x,y){apply(cbind(x,y),1,fr)} z <- outer(x, y, f) persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue", ticktype="detailed") -> res points(trans3d(1, 1, 0, pmat = res), col = 2, pch = 16,cex=2) points(trans3d(res3$par[1], res3$par[1], res3$ofv, pmat = res), col = "green", pch = 16,cex=2) ## End(Not run) # box constraints flb <- function(x){ p <- length(x) sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) } ## 25-dimensional box constrained #optim(rep(3, 25), flb,lower = rep(2, 25), upper = rep(4, 25),method = "L-BFGS-B") res_box <- optim_ARS(rep(3, 25), flb,lower = rep(2, 25), upper = rep(4, 25)) ## Combinatorial optimization: Traveling salesman problem eurodistmat <- as.matrix(eurodist) distance <- function(sq) { # Target function sq2 <- embed(sq, 2) sum(eurodistmat[cbind(sq2[,2], sq2[,1])]) } genseq <- function(sq) { # Generate new candidate sequence idx <- seq(2, NROW(eurodistmat)-1) changepoints <- sample(idx, size = 2, replace = FALSE) tmp <- sq[changepoints[1]] sq[changepoints[1]] <- sq[changepoints[2]] sq[changepoints[2]] <- tmp sq } sq <- c(1:nrow(eurodistmat), 1) # Initial sequence: alphabetic res3 <- optim_ARS(sq,distance,generator=genseq) # Near optimum distance around 12842 ## Not run: # plot of initial sequence # rotate for conventional orientation loc <- -cmdscale(eurodist, add = TRUE)$points x <- loc[,1]; y <- loc[,2] s <- seq_len(nrow(eurodistmat)) tspinit <- loc[sq,] plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", main = paste("Initial sequence of traveling salesman problem\n", "Distance =",distance(sq)), axes = FALSE) arrows(tspinit[s,1], tspinit[s,2], tspinit[s+1,1], tspinit[s+1,2], angle = 10, col = "green") text(x, y, labels(eurodist), cex = 0.8) # plot of final sequence from optim_ARS tspres <- loc[res3$par,] plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", main = paste("optim_ARS() 'solving' traveling salesman problem\n", "Distance =",distance(c(1,res3$par,1))),axes = FALSE) arrows(tspres[s,1], tspres[s,2], tspres[s+1,1], tspres[s+1,2], angle = 10, col = "red") text(x, y, labels(eurodist), cex = 0.8) # using optim set.seed(123) # chosen to get a good soln relatively quickly (res4 <- optim(sq, distance, genseq, method = "SANN", control = list(maxit = 30000, temp = 2000, trace = TRUE, REPORT = 500))) tspres <- loc[res4$par,] plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", main = paste("optim() 'solving' traveling salesman problem\n", "Distance =",distance(res4$par)),axes = FALSE) arrows(tspres[s,1], tspres[s,2], tspres[s+1,1], tspres[s+1,2], angle = 10, col = "red") text(x, y, labels(eurodist), cex = 0.8) ## End(Not run) # one-dimensional function ## Not run: f <- function(x) abs(x)+cos(x) res5 <- optim_ARS(-20,f,lower=-20, upper=20) curve(f, -20, 20) abline(v = res5$par, lty = 4,col="green") ## End(Not run) # one-dimensional function f <- function(x) (x^2+x)*cos(x) # -10 < x < 10 res_max <- optim_ARS(0,f,lower=-10, upper=10,maximize=TRUE) # sometimes to local maxima ## Not run: res_min <- optim_ARS(0,f,lower=-10, upper=10) # sometimes to local minima curve(f, -10, 10) abline(v = res_min$par, lty = 4,col="green") abline(v = res_max$par, lty = 4,col="red") ## End(Not run) # two-dimensional Rastrigin function #It has a global minimum at f(x) = f(0) = 0. ## Not run: Rastrigin <- function(x1, x2){ 20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2)) } x1 <- x2 <- seq(-5.12, 5.12, by = 0.1) z <- outer(x1, x2, Rastrigin) res6 <- optim_ARS(c(-4,4),function(x) Rastrigin(x[1], x[2]),lower=-5.12, upper=5.12) # color scale nrz <- nrow(z) ncz <- ncol(z) jet.colors <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")) # Generate the desired number of colors from this palette nbcol <- 100 color <- jet.colors(nbcol) # Compute the z-value at the facet centres zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz] # Recode facet z-values into color indices facetcol <- cut(zfacet, nbcol) persp(x1, x2, z, col = color[facetcol], phi = 30, theta = 30) filled.contour(x1, x2, z, color.palette = jet.colors) ## End(Not run) ## Parallel computation ## works better when each evaluation takes longer ## here we have added extra time to the computations ## just to show that it works ## Not run: res7 <- optim_ARS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12) res8 <- optim_ARS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12,parallel = T) res9 <- optim_ARS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12,parallel = T,parallel_type = "snow") ## End(Not run)
optim_LS
performs sequential grid search optimization of an arbitrary function with respect
to each of the parameters to be optimized over.
The function works for both discrete and continuous optimization parameters
and allows for box-constraints (by using the upper and lower function arguments) or sets of allowed values (by using the
allowed_values function argument) for all parameters, or on a parameter per parameter basis.
optim_LS( par, fn, lower = NULL, upper = NULL, allowed_values = NULL, line_length = 50, trace = TRUE, maximize = F, parallel = F, parallel_type = NULL, num_cores = NULL, mrgsolve_model = NULL, seed = round(runif(1, 0, 1e+07)), allow_replicates = TRUE, replicates_index = seq(1, length(par)), ofv_initial = NULL, closed_bounds = TRUE, ... )
optim_LS( par, fn, lower = NULL, upper = NULL, allowed_values = NULL, line_length = 50, trace = TRUE, maximize = F, parallel = F, parallel_type = NULL, num_cores = NULL, mrgsolve_model = NULL, seed = round(runif(1, 0, 1e+07)), allow_replicates = TRUE, replicates_index = seq(1, length(par)), ofv_initial = NULL, closed_bounds = TRUE, ... )
par |
A vector of initial values for the parameters to be optimized over. |
fn |
A function to be minimized (or maximized), with first argument the vector of parameters over which minimization is to take place. It should return a scalar result. |
lower |
Lower bounds on the parameters. A vector. |
upper |
Upper bounds on the parameters. A vector. |
allowed_values |
A list containing allowed values for each parameter |
line_length |
The number of different parameter values per parameter to evaluate. The values are selected as an evenly spaced grid between the upper and lower bounds. |
trace |
Should the algorithm output results intermittently. |
maximize |
Should the function be maximized? Default is to minimize. |
parallel |
Should we use parallel computations? |
parallel_type |
Which type of parallelization should be used?
Can be "snow" or "multicore". "snow" works on Linux-like systems & Windows. "multicore" works only on
Linux-like systems. By default this is chosen for you depending on your operating system.
See |
num_cores |
The number of cores to use in the parallelization. By default is set to the number
output from
|
mrgsolve_model |
If the computations require a mrgsolve model and you
are using the "snow" method then you need to specify the name of the model
object created by |
seed |
The random seed to use in the algorithm, |
allow_replicates |
Should the algorithm allow parameters to have the same value? |
replicates_index |
A vector, the same length as the parameters. If two values are the same in this vector then the parameters may not assume the same value in the optimization. |
ofv_initial |
An initial objective function value (OFV). If not NULL then the initial design is not evaluated and the OFV value is assumed to be this number. |
closed_bounds |
Are the upper and lower limits open (boundaries not allowed) or closed (boundaries allowed) bounds? |
... |
Additional arguments passed to |
M. Foracchia, A.C. Hooker, P. Vicini and A. Ruggeri, "PopED, a software fir optimal experimental design in population kinetics", Computer Methods and Programs in Biomedicine, 74, 2004.
J. Nyberg, S. Ueckert, E.A. Stroemberg, S. Hennig, M.O. Karlsson and A.C. Hooker, "PopED: An extended, parallelized, nonlinear mixed effects models optimal design tool", Computer Methods and Programs in Biomedicine, 108, 2012.
Other Optimize:
Doptim()
,
LEDoptim()
,
RS_opt()
,
a_line_search()
,
bfgsb_min()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
poped_optim()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
# "wild" function fw <- function(x) 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80 # Global minimum of 67.47 at about -15.81515 (fw_min <- fw(-15.81515)) if (interactive()){ #plot of the function require(graphics) plot(fw, -50, 50, n = 10000, main = "Minimizing 'wild function'") # Known minimum points(-15.81515, fw_min, pch = 21, col = "red", cex = 1.5) } # optimization with fewer function evaluations # compared to SANN: see examples in '?optim' res1 <- optim_LS(50, fw,lower = -50, upper=50, line_length = 10000) if (interactive()){ require(graphics) plot(fw, -20, 0, n = 10000, main = "Minimizing 'wild function'") # Known minimum points(-15.81515, fw_min, pch = 21, col = "red", cex = 1.5) #plot of the optimization points(res1$par, res1$ofv, pch = 16, col = "green", cex = 1) } # Upper and lower bounds and line_length should be considered carefully res2 <- optim_LS(50, fw, lower=-Inf,upper=Inf,line_length = 10000) # Only integer values allowed res_int <- optim_LS(50, fw, allowed_values = seq(-50,50,by=1)) # Rosenbrock Banana function # f(x, y) = (a-x)^2 + b*(y-x^2)^2 # global minimum at (x, y)=(a, a^2), where f(x, y)=0. # Usually a = 1 and b = 100 so x=1 and y=1 if (interactive()){ fr <- function(x,a=1,b=100) { x1 <- x[1] x2 <- x[2] b*(x2 - x1*x1)^2 + (a - x1)^2 } res3 <- optim_LS(c(-1.2,1), fr,lower = -5, upper = 5, line_length = 1000) # plot the surface x <- seq(-50, 50, length= 30) y <- x f <- function(x,y){apply(cbind(x,y),1,fr)} z <- outer(x, y, f) persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue", ticktype="detailed") -> res points(trans3d(1, 1, 0, pmat = res), col = 2, pch = 16,cex=2) points(trans3d(res3$par[1], res3$par[1], res3$ofv, pmat = res), col = "green", pch = 16,cex=1.5) } # box constraints flb <- function(x){ p <- length(x) sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) } ## 25-dimensional box constrained if (interactive()){ optim(rep(3, 25), flb,lower = rep(2, 25), upper = rep(4, 25),method = "L-BFGS-B") } res_box <- optim_LS(rep(3, 25), flb, lower = rep(2, 25), upper = rep(4, 25), line_length = 1000) # one-dimensional function if (interactive()){ f <- function(x) abs(x)+cos(x) res5 <- optim_LS(-20,f,lower=-20, upper=20, line_length = 500) curve(f, -20, 20) abline(v = res5$par, lty = 4,col="green") } # one-dimensional function f <- function(x) (x^2+x)*cos(x) # -10 < x < 10 res_max <- optim_LS(0,f,lower=-10, upper=10,maximize=TRUE,line_length = 1000) if (interactive()){ res_min <- optim_LS(0,f,lower=-10, upper=10, line_length = 1000) curve(f, -10, 10) abline(v = res_min$par, lty = 4,col="green") abline(v = res_max$par, lty = 4,col="red") } # two-dimensional Rastrigin function #It has a global minimum at f(x) = f(0) = 0. if (interactive()){ Rastrigin <- function(x1, x2){ 20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2)) } x1 <- x2 <- seq(-5.12, 5.12, by = 0.1) z <- outer(x1, x2, Rastrigin) res6 <- optim_LS(c(-4,4),function(x) Rastrigin(x[1], x[2]), lower=-5.12, upper=5.12, line_length = 1000) # color scale nrz <- nrow(z) ncz <- ncol(z) jet.colors <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")) # Generate the desired number of colors from this palette nbcol <- 100 color <- jet.colors(nbcol) # Compute the z-value at the facet centres zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz] # Recode facet z-values into color indices facetcol <- cut(zfacet, nbcol) persp(x1, x2, z, col = color[facetcol], phi = 30, theta = 30) filled.contour(x1, x2, z, color.palette = jet.colors) } ## Parallel computation ## works better when each evaluation takes longer ## here we have added extra time to the computations ## just to show that it works if (interactive()){ res7 <- optim_LS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12, line_length = 200) res8 <- optim_LS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12, line_length = 200, parallel = TRUE) res9 <- optim_LS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12, line_length = 200, parallel = TRUE, parallel_type = "snow") }
# "wild" function fw <- function(x) 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80 # Global minimum of 67.47 at about -15.81515 (fw_min <- fw(-15.81515)) if (interactive()){ #plot of the function require(graphics) plot(fw, -50, 50, n = 10000, main = "Minimizing 'wild function'") # Known minimum points(-15.81515, fw_min, pch = 21, col = "red", cex = 1.5) } # optimization with fewer function evaluations # compared to SANN: see examples in '?optim' res1 <- optim_LS(50, fw,lower = -50, upper=50, line_length = 10000) if (interactive()){ require(graphics) plot(fw, -20, 0, n = 10000, main = "Minimizing 'wild function'") # Known minimum points(-15.81515, fw_min, pch = 21, col = "red", cex = 1.5) #plot of the optimization points(res1$par, res1$ofv, pch = 16, col = "green", cex = 1) } # Upper and lower bounds and line_length should be considered carefully res2 <- optim_LS(50, fw, lower=-Inf,upper=Inf,line_length = 10000) # Only integer values allowed res_int <- optim_LS(50, fw, allowed_values = seq(-50,50,by=1)) # Rosenbrock Banana function # f(x, y) = (a-x)^2 + b*(y-x^2)^2 # global minimum at (x, y)=(a, a^2), where f(x, y)=0. # Usually a = 1 and b = 100 so x=1 and y=1 if (interactive()){ fr <- function(x,a=1,b=100) { x1 <- x[1] x2 <- x[2] b*(x2 - x1*x1)^2 + (a - x1)^2 } res3 <- optim_LS(c(-1.2,1), fr,lower = -5, upper = 5, line_length = 1000) # plot the surface x <- seq(-50, 50, length= 30) y <- x f <- function(x,y){apply(cbind(x,y),1,fr)} z <- outer(x, y, f) persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue", ticktype="detailed") -> res points(trans3d(1, 1, 0, pmat = res), col = 2, pch = 16,cex=2) points(trans3d(res3$par[1], res3$par[1], res3$ofv, pmat = res), col = "green", pch = 16,cex=1.5) } # box constraints flb <- function(x){ p <- length(x) sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) } ## 25-dimensional box constrained if (interactive()){ optim(rep(3, 25), flb,lower = rep(2, 25), upper = rep(4, 25),method = "L-BFGS-B") } res_box <- optim_LS(rep(3, 25), flb, lower = rep(2, 25), upper = rep(4, 25), line_length = 1000) # one-dimensional function if (interactive()){ f <- function(x) abs(x)+cos(x) res5 <- optim_LS(-20,f,lower=-20, upper=20, line_length = 500) curve(f, -20, 20) abline(v = res5$par, lty = 4,col="green") } # one-dimensional function f <- function(x) (x^2+x)*cos(x) # -10 < x < 10 res_max <- optim_LS(0,f,lower=-10, upper=10,maximize=TRUE,line_length = 1000) if (interactive()){ res_min <- optim_LS(0,f,lower=-10, upper=10, line_length = 1000) curve(f, -10, 10) abline(v = res_min$par, lty = 4,col="green") abline(v = res_max$par, lty = 4,col="red") } # two-dimensional Rastrigin function #It has a global minimum at f(x) = f(0) = 0. if (interactive()){ Rastrigin <- function(x1, x2){ 20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2)) } x1 <- x2 <- seq(-5.12, 5.12, by = 0.1) z <- outer(x1, x2, Rastrigin) res6 <- optim_LS(c(-4,4),function(x) Rastrigin(x[1], x[2]), lower=-5.12, upper=5.12, line_length = 1000) # color scale nrz <- nrow(z) ncz <- ncol(z) jet.colors <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")) # Generate the desired number of colors from this palette nbcol <- 100 color <- jet.colors(nbcol) # Compute the z-value at the facet centres zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz] # Recode facet z-values into color indices facetcol <- cut(zfacet, nbcol) persp(x1, x2, z, col = color[facetcol], phi = 30, theta = 30) filled.contour(x1, x2, z, color.palette = jet.colors) } ## Parallel computation ## works better when each evaluation takes longer ## here we have added extra time to the computations ## just to show that it works if (interactive()){ res7 <- optim_LS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12, line_length = 200) res8 <- optim_LS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12, line_length = 200, parallel = TRUE) res9 <- optim_LS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])}, lower=-5.12, upper=5.12, line_length = 200, parallel = TRUE, parallel_type = "snow") }
Title Optimize the proportion of individuals in the design groups
optimize_groupsize( poped.db, props = c(poped.db$design$groupsize/sum(poped.db$design$groupsize)), trace = 1, ... )
optimize_groupsize( poped.db, props = c(poped.db$design$groupsize/sum(poped.db$design$groupsize)), trace = 1, ... )
poped.db |
A PopED database. |
props |
The proportions of individuals in each group (relative to the total number of individuals) to start the optimization from. |
trace |
Should there be tracing of the optimization? Value can be integer values. Larger numbers give more information. |
... |
A list of the initial objective function value, optimal proportions, the objective function value with those proportions, the optimal number of individuals in each group (with integer number of individuals), and the objective function value with that number of individuals.
# 2 design groups with either early or late samples poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) }, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), xt=list(c(1,2,3),c(4,5,20,120)), groupsize=50, minxt=0.01, maxxt=120, a=70, mina=0.01, maxa=100) plot_model_prediction(poped.db) evaluate_design(poped.db) # what are the optimal proportions of # individuals in the two groups in the study? (n_opt <- optimize_groupsize(poped.db)) # How many individuals in the original design are needed to achieve an # efficiency of 1 compared to the optimized design with n=100? optimize_n_eff(poped.db, ofv_ref=n_opt$opt_ofv_with_n)
# 2 design groups with either early or late samples poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) }, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), xt=list(c(1,2,3),c(4,5,20,120)), groupsize=50, minxt=0.01, maxxt=120, a=70, mina=0.01, maxa=100) plot_model_prediction(poped.db) evaluate_design(poped.db) # what are the optimal proportions of # individuals in the two groups in the study? (n_opt <- optimize_groupsize(poped.db)) # How many individuals in the original design are needed to achieve an # efficiency of 1 compared to the optimized design with n=100? optimize_n_eff(poped.db, ofv_ref=n_opt$opt_ofv_with_n)
optimize HOW MANY n there should be to achieve efficiency=1 compared to a reference OFV
optimize_n_eff(poped.db, ofv_ref, norm_group_fim = NULL, ...)
optimize_n_eff(poped.db, ofv_ref, norm_group_fim = NULL, ...)
poped.db |
A PopED database. |
ofv_ref |
A reference OFV value to compare to. |
norm_group_fim |
The FIM per individual in each design group. If |
... |
Arguments passed to |
The number of individuals needed.
# 2 design groups with either early or late samples poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) }, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), xt=list(c(1,2,3),c(4,5,20,120)), groupsize=50, minxt=0.01, maxxt=120, a=70, mina=0.01, maxa=100) plot_model_prediction(poped.db) evaluate_design(poped.db) # what are the optimal proportions of # individuals in the two groups in the study? (n_opt <- optimize_groupsize(poped.db)) # How many individuals in the original design are needed to achieve an # efficiency of 1 compared to the optimized design with n=100? optimize_n_eff(poped.db, ofv_ref=n_opt$opt_ofv_with_n)
# 2 design groups with either early or late samples poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) }, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), xt=list(c(1,2,3),c(4,5,20,120)), groupsize=50, minxt=0.01, maxxt=120, a=70, mina=0.01, maxa=100) plot_model_prediction(poped.db) evaluate_design(poped.db) # what are the optimal proportions of # individuals in the two groups in the study? (n_opt <- optimize_groupsize(poped.db)) # How many individuals in the original design are needed to achieve an # efficiency of 1 compared to the optimized design with n=100? optimize_n_eff(poped.db, ofv_ref=n_opt$opt_ofv_with_n)
Optimize the number of subjects, based on the current design and the desired uncertainty of a single parameter
optimize_n_rse( poped.db, bpop_idx, need_rse, use_percent = TRUE, allowed_values = seq(poped.db$design$m, sum(poped.db$design$groupsize) * 5, by = poped.db$design$m) )
optimize_n_rse( poped.db, bpop_idx, need_rse, use_percent = TRUE, allowed_values = seq(poped.db$design$m, sum(poped.db$design$groupsize) * 5, by = poped.db$design$m) )
poped.db |
A PopED database. |
bpop_idx |
The index number of the parameter, currently only bpop parameters are allowed. |
need_rse |
The relative standard error (RSE) one would like to achieve (in percent, by default). |
use_percent |
Should the RSE be represented as a percentage (T/F)? |
allowed_values |
A vector of the allowed total number of subjects in the study. |
The total number of subjects needed and the RSE of the parameter.
# 2 design groups with either early or late samples poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) }, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), xt=list(c(1,2,3),c(4,5,20,120)), groupsize=50, minxt=0.01, maxxt=120, a=70, mina=0.01, maxa=100) # plot of the design plot_model_prediction(poped.db) # the current RSE values evaluate_design(poped.db)$rse # number of individuals if CL should have 10% RSE optimize_n_rse(poped.db, bpop_idx=1, # for CL need_rse=10) # the RSE you want
# 2 design groups with either early or late samples poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) }, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), xt=list(c(1,2,3),c(4,5,20,120)), groupsize=50, minxt=0.01, maxxt=120, a=70, mina=0.01, maxa=100) # plot of the design plot_model_prediction(poped.db) # the current RSE values evaluate_design(poped.db)$rse # number of individuals if CL should have 10% RSE optimize_n_rse(poped.db, bpop_idx=1, # for CL need_rse=10) # the RSE you want
Function generates random samples for a list of parameters
pargen(par, user_dist_pointer, sample_size, bLHS, sample_number, poped.db)
pargen(par, user_dist_pointer, sample_size, bLHS, sample_number, poped.db)
par |
A matrix describing the parameters. Each row is a parameter and the matrix has three columns:
|
user_dist_pointer |
A text string of the name of a function that generates random samples from a user defined distribution. |
sample_size |
The number of random samples per parameter to generate |
bLHS |
Logical, indicating if Latin Hypercube Sampling should be used. |
sample_number |
The sample number to extract from a user distribution. |
poped.db |
A PopED database. |
A matrix of random samples of size (sample_size x number_of_parameters)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### # Adding 40% Uncertainty to fixed effects log-normal (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.4)^2) # 40% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) pars.ln <- pargen(par=bpop_vals_ed_ln, user_dist_pointer=NULL, sample_size=1000, bLHS=1, sample_number=NULL, poped.db) # Adding 10% Uncertainty to fixed effects normal-distribution (not Favail) bpop_vals_ed_n <- cbind(ones(length(bpop_vals),1)*1, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_n["Favail",] <- c(0,1,0) pars.n <- pargen(par=bpop_vals_ed_n, user_dist_pointer=NULL, sample_size=1000, bLHS=1, sample_number=NULL, poped.db) # Adding 10% Uncertainty to fixed effects uniform-distribution (not Favail) bpop_vals_ed_u <- cbind(ones(length(bpop_vals),1)*2, # uniform distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)) # 10% of bpop value bpop_vals_ed_u["Favail",] <- c(0,1,0) pars.u <- pargen(par=bpop_vals_ed_u, user_dist_pointer=NULL, sample_size=1000, bLHS=1, sample_number=NULL, poped.db) # Adding user defined distributions bpop_vals_ed_ud <- cbind(ones(length(bpop_vals),1)*3, # user dfined distribution bpop_vals, bpop_vals*0.1) # 10% of bpop value bpop_vals_ed_ud["Favail",] <- c(0,1,0) # A normal distribution my_dist <- function(...){ par_vec <- rnorm(c(1,1,1,1),mean=bpop_vals_ed_ud[,2],sd=bpop_vals_ed_ud[,3]) } pars.ud <- pargen(par=bpop_vals_ed_ud, user_dist_pointer=my_dist, sample_size=1000, bLHS=1, sample_number=NULL, poped.db)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### # Adding 40% Uncertainty to fixed effects log-normal (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.4)^2) # 40% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) pars.ln <- pargen(par=bpop_vals_ed_ln, user_dist_pointer=NULL, sample_size=1000, bLHS=1, sample_number=NULL, poped.db) # Adding 10% Uncertainty to fixed effects normal-distribution (not Favail) bpop_vals_ed_n <- cbind(ones(length(bpop_vals),1)*1, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_n["Favail",] <- c(0,1,0) pars.n <- pargen(par=bpop_vals_ed_n, user_dist_pointer=NULL, sample_size=1000, bLHS=1, sample_number=NULL, poped.db) # Adding 10% Uncertainty to fixed effects uniform-distribution (not Favail) bpop_vals_ed_u <- cbind(ones(length(bpop_vals),1)*2, # uniform distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)) # 10% of bpop value bpop_vals_ed_u["Favail",] <- c(0,1,0) pars.u <- pargen(par=bpop_vals_ed_u, user_dist_pointer=NULL, sample_size=1000, bLHS=1, sample_number=NULL, poped.db) # Adding user defined distributions bpop_vals_ed_ud <- cbind(ones(length(bpop_vals),1)*3, # user dfined distribution bpop_vals, bpop_vals*0.1) # 10% of bpop value bpop_vals_ed_ud["Favail",] <- c(0,1,0) # A normal distribution my_dist <- function(...){ par_vec <- rnorm(c(1,1,1,1),mean=bpop_vals_ed_ud[,2],sd=bpop_vals_ed_ud[,3]) } pars.ud <- pargen(par=bpop_vals_ed_ud, user_dist_pointer=my_dist, sample_size=1000, bLHS=1, sample_number=NULL, poped.db)
Function plots the efficiency of windows around the sample time points.
The function samples from a uniform distribution around the sample time
points for each group (or each individual with deviate_by_id=TRUE
,
with slower calculation times) and compares the results with the
design defined in poped.db
. The maximal and minimal allowed values for all design variables as
defined in poped.db are respected (e.g. poped.db$design_space$minxt and
poped.db$design_space$maxxt).
plot_efficiency_of_windows( poped.db, xt_windows = NULL, xt_plus = xt_windows, xt_minus = xt_windows, iNumSimulations = 100, y_eff = TRUE, y_rse = TRUE, ofv_calc_type = poped.db$settings$ofv_calc_type, mean_line = TRUE, mean_color = "red", deviate_by_id = FALSE, parallel = F, seed = round(runif(1, 0, 1e+07)), ... )
plot_efficiency_of_windows( poped.db, xt_windows = NULL, xt_plus = xt_windows, xt_minus = xt_windows, iNumSimulations = 100, y_eff = TRUE, y_rse = TRUE, ofv_calc_type = poped.db$settings$ofv_calc_type, mean_line = TRUE, mean_color = "red", deviate_by_id = FALSE, parallel = F, seed = round(runif(1, 0, 1e+07)), ... )
poped.db |
A poped database |
xt_windows |
The distance on one direction from the optimal sample
times. Can be a number or a matrix of the same size as the xt matrix found
in |
xt_plus |
The upper distance from the optimal sample times (xt +
xt_plus). Can be a number or a matrix of the same size as the xt matrix
found in |
xt_minus |
The lower distance from the optimal sample times (xt -
xt_minus). Can be a number or a matrix of the same size as the xt matrix
found in |
iNumSimulations |
The number of design simulations to make within the specified windows. |
y_eff |
Should one of the plots created have efficiency on the y-axis? |
y_rse |
Should created plots include the relative standard error of each parameter as a value on the y-axis? |
ofv_calc_type |
OFV calculation type for FIM
|
mean_line |
Should a mean value line be created? |
mean_color |
The color of the mean value line. |
deviate_by_id |
Should the computations look at deviations per individual instead of per group? |
parallel |
Should we use parallel computations (T/F)?
Other options can be defined in this function and passed
to |
seed |
The random seed to use. |
... |
Extra arguments passed to |
A ggplot object.
Other evaluate_design:
evaluate.fim()
,
evaluate_design()
,
evaluate_power()
,
get_rse()
,
model_prediction()
,
plot_model_prediction()
Other Simulation:
model_prediction()
,
plot_model_prediction()
Other Graphics:
plot_model_prediction()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### # Examine efficiency of sampling windows at plus/minus 0.5 hours from # sample points in the design plot_efficiency_of_windows(poped.db,xt_windows=0.5) if(interactive()){ plot_efficiency_of_windows(poped.db, xt_plus=c( 0.5,1,2,1,2,3,7,1), xt_minus=c( 0.1,2,5,4,2,3,6,2)) plot_efficiency_of_windows(poped.db,xt_windows=c( 0.5,1,2,1,2,3,7,1)) plot_efficiency_of_windows(poped.db, xt_plus=c( 0.5,1,2,1,2,3,7,1), xt_minus=c( 0.1,2,5,4,2,3,6,2), y_rse=FALSE) plot_efficiency_of_windows(poped.db, xt_plus=c( 0.5,1,2,1,2,3,7,1), xt_minus=c( 0.1,2,5,4,2,3,6,2), y_eff=FALSE) }
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### # Examine efficiency of sampling windows at plus/minus 0.5 hours from # sample points in the design plot_efficiency_of_windows(poped.db,xt_windows=0.5) if(interactive()){ plot_efficiency_of_windows(poped.db, xt_plus=c( 0.5,1,2,1,2,3,7,1), xt_minus=c( 0.1,2,5,4,2,3,6,2)) plot_efficiency_of_windows(poped.db,xt_windows=c( 0.5,1,2,1,2,3,7,1)) plot_efficiency_of_windows(poped.db, xt_plus=c( 0.5,1,2,1,2,3,7,1), xt_minus=c( 0.1,2,5,4,2,3,6,2), y_rse=FALSE) plot_efficiency_of_windows(poped.db, xt_plus=c( 0.5,1,2,1,2,3,7,1), xt_minus=c( 0.1,2,5,4,2,3,6,2), y_eff=FALSE) }
Function plots model predictions for the typical value in the population, individual predictions and data predictions.
plot_model_prediction( poped.db, model_num_points = 100, groupsize_sim = 100, separate.groups = F, sample.times = T, sample.times.IPRED = F, sample.times.DV = F, PRED = T, IPRED = F, IPRED.lines = F, IPRED.lines.pctls = F, alpha.IPRED.lines = 0.1, alpha.IPRED = 0.3, sample.times.size = 4, DV = F, alpha.DV = 0.3, DV.lines = F, DV.points = F, alpha.DV.lines = 0.3, alpha.DV.points = 0.3, sample.times.DV.points = F, sample.times.DV.lines = F, alpha.sample.times.DV.points = 0.3, alpha.sample.times.DV.lines = 0.3, y_lab = "Model Predictions", facet_scales = "fixed", facet_label_names = T, model.names = NULL, DV.mean.sd = FALSE, PI = FALSE, PI_alpha = 0.3, ... )
plot_model_prediction( poped.db, model_num_points = 100, groupsize_sim = 100, separate.groups = F, sample.times = T, sample.times.IPRED = F, sample.times.DV = F, PRED = T, IPRED = F, IPRED.lines = F, IPRED.lines.pctls = F, alpha.IPRED.lines = 0.1, alpha.IPRED = 0.3, sample.times.size = 4, DV = F, alpha.DV = 0.3, DV.lines = F, DV.points = F, alpha.DV.lines = 0.3, alpha.DV.points = 0.3, sample.times.DV.points = F, sample.times.DV.lines = F, alpha.sample.times.DV.points = 0.3, alpha.sample.times.DV.lines = 0.3, y_lab = "Model Predictions", facet_scales = "fixed", facet_label_names = T, model.names = NULL, DV.mean.sd = FALSE, PI = FALSE, PI_alpha = 0.3, ... )
poped.db |
A PopED database. |
model_num_points |
How many extra observation rows should be created in the data frame for each group or individual
per model. If used then the points are placed evenly between |
groupsize_sim |
How many individuals per group should be simulated when DV=TRUE or IPRED=TRUE to create prediction intervals? |
separate.groups |
Should there be separate plots for each group. |
sample.times |
Should sample times be shown on the plots. |
sample.times.IPRED |
Should sample times be shown based on the IPRED y-values. |
sample.times.DV |
Should sample times be shown based on the DV y-values. |
PRED |
Should a PRED line be drawn. |
IPRED |
Should we simulate individual predictions? |
IPRED.lines |
Should IPRED lines be drawn? |
IPRED.lines.pctls |
Should lines be drawn at the chosen percentiles of the IPRED values? |
alpha.IPRED.lines |
What should the transparency for the IPRED.lines be? |
alpha.IPRED |
What should the transparency of the IPRED CI? |
sample.times.size |
What should the size of the sample.times be? |
DV |
should we simulate observations? |
alpha.DV |
What should the transparency of the DV CI? |
DV.lines |
Should DV lines be drawn? |
DV.points |
Should DV points be drawn? |
alpha.DV.lines |
What should the transparency for the DV.lines be? |
alpha.DV.points |
What should the transparency for the DV.points be? |
sample.times.DV.points |
TRUE or FALSE. |
sample.times.DV.lines |
TRUE or FALSE. |
alpha.sample.times.DV.points |
What should the transparency for the sample.times.DV.points be? |
alpha.sample.times.DV.lines |
What should the transparency for the sample.times.DV.lines be? |
y_lab |
The label of the y-axis. |
facet_scales |
Can be "free", "fixed", "free_x" or "free_y" |
facet_label_names |
TRUE or FALSE |
model.names |
A vector of names of the response model/s (the length of the vector should be equal to the number of response models). It is Null by default. |
DV.mean.sd |
Plot the mean and standard deviation of simulated observations. |
PI |
Plot prediction intervals for the expected data given the model.
Predictions are based on first-order approximations to
the model variance and a normality assumption of that variance. As such these computations are
more approximate than using |
PI_alpha |
The transparency of the PI. |
... |
Additional arguments passed to the |
A ggplot object. If you would like to further edit this plot don't
forget to load the ggplot2 library using library(ggplot2)
.
Other evaluate_design:
evaluate.fim()
,
evaluate_design()
,
evaluate_power()
,
get_rse()
,
model_prediction()
,
plot_efficiency_of_windows()
Other Simulation:
model_prediction()
,
plot_efficiency_of_windows()
Other Graphics:
plot_efficiency_of_windows()
## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database( ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## create plot of model without variability plot_model_prediction(poped.db) ## create plot of model with variability by simulating from OMEGA and SIGMA plot_model_prediction(poped.db,IPRED=TRUE,DV=TRUE) ## create plot of model with variability by ## computing the expected variance (using an FO approximation) ## and then computing a prediction interval ## based on an assumption of normality ## computation is faster but less accurate ## compared to using DV=TRUE (and groupsize_sim = 500) plot_model_prediction(poped.db,PI=TRUE) ##-- Model: One comp first order absorption + inhibitory imax ## -- works for both mutiple and single dosing ff <- function(model_switch,xt,parameters,poped.db){ with(as.list(parameters),{ y=xt MS <- model_switch # PK model N = floor(xt/TAU)+1 CONC=(DOSE*Favail/V)*(KA/(KA - CL/V)) * (exp(-CL/V * (xt - (N - 1) * TAU)) * (1 - exp(-N * CL/V * TAU))/(1 - exp(-CL/V * TAU)) - exp(-KA * (xt - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU))) # PD model EFF = E0*(1 - CONC*IMAX/(IC50 + CONC)) y[MS==1] = CONC[MS==1] y[MS==2] = EFF[MS==2] return(list( y= y,poped.db=poped.db)) }) } ## -- parameter definition function sfg <- function(x,a,bpop,b,bocc){ parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), CL=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU = a[2], E0=bpop[5]*exp(b[4]), IMAX=bpop[6], IC50=bpop[7]) return( parameters ) } ## -- Residual Error function feps <- function(model_switch,xt,parameters,epsi,poped.db){ returnArgs <- ff(model_switch,xt,parameters,poped.db) y <- returnArgs[[1]] poped.db <- returnArgs[[2]] MS <- model_switch pk.dv <- y*(1+epsi[,1])+epsi[,2] pd.dv <- y*(1+epsi[,3])+epsi[,4] y[MS==1] = pk.dv[MS==1] y[MS==2] = pd.dv[MS==2] return(list( y= y,poped.db =poped.db )) } poped.db <- create.poped.database( ff_fun=ff, fError_fun=feps, fg_fun=sfg, groupsize=20, m=3, bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9, E0=1120,IMAX=0.807,IC50=0.0993), notfixed_bpop=c(1,1,1,0,1,1,1), d=c(V=0.09,KA=0.09,CL=0.25^2,E0=0.09), sigma=c(0.04,5e-6,0.09,100), notfixed_sigma=c(0,0,0,0), xt=c( 1,2,8,240,240,1,2,8,240,240), minxt=c(0,0,0,240,240,0,0,0,240,240), maxxt=c(10,10,10,248,248,10,10,10,248,248), discrete_xt = list(0:248), G_xt=c(1,2,3,4,5,1,2,3,4,5), bUseGrouped_xt=1, model_switch=c(1,1,1,1,1,2,2,2,2,2), a=list(c(DOSE=20,TAU=24),c(DOSE=40, TAU=24),c(DOSE=0, TAU=24)), maxa=c(DOSE=200,TAU=40), mina=c(DOSE=0,TAU=2), ourzero=0) ## create plot of model and design plot_model_prediction(poped.db,facet_scales="free", model.names = c("PK","PD")) ## create plot of model with variability by ## computing the expected variance (using an FO approximation) ## and then computing a prediction interval ## based on an assumption of normality ## computation is faster but less accurate ## compared to using DV=TRUE (and groupsize_sim = 500) plot_model_prediction(poped.db,facet_scales="free", model.names = c("PK","PD"), PI=TRUE, separate.groups = TRUE)
## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. library(PopED) ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.md.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database( ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=0.01, groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70) ## create plot of model without variability plot_model_prediction(poped.db) ## create plot of model with variability by simulating from OMEGA and SIGMA plot_model_prediction(poped.db,IPRED=TRUE,DV=TRUE) ## create plot of model with variability by ## computing the expected variance (using an FO approximation) ## and then computing a prediction interval ## based on an assumption of normality ## computation is faster but less accurate ## compared to using DV=TRUE (and groupsize_sim = 500) plot_model_prediction(poped.db,PI=TRUE) ##-- Model: One comp first order absorption + inhibitory imax ## -- works for both mutiple and single dosing ff <- function(model_switch,xt,parameters,poped.db){ with(as.list(parameters),{ y=xt MS <- model_switch # PK model N = floor(xt/TAU)+1 CONC=(DOSE*Favail/V)*(KA/(KA - CL/V)) * (exp(-CL/V * (xt - (N - 1) * TAU)) * (1 - exp(-N * CL/V * TAU))/(1 - exp(-CL/V * TAU)) - exp(-KA * (xt - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU))) # PD model EFF = E0*(1 - CONC*IMAX/(IC50 + CONC)) y[MS==1] = CONC[MS==1] y[MS==2] = EFF[MS==2] return(list( y= y,poped.db=poped.db)) }) } ## -- parameter definition function sfg <- function(x,a,bpop,b,bocc){ parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), CL=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU = a[2], E0=bpop[5]*exp(b[4]), IMAX=bpop[6], IC50=bpop[7]) return( parameters ) } ## -- Residual Error function feps <- function(model_switch,xt,parameters,epsi,poped.db){ returnArgs <- ff(model_switch,xt,parameters,poped.db) y <- returnArgs[[1]] poped.db <- returnArgs[[2]] MS <- model_switch pk.dv <- y*(1+epsi[,1])+epsi[,2] pd.dv <- y*(1+epsi[,3])+epsi[,4] y[MS==1] = pk.dv[MS==1] y[MS==2] = pd.dv[MS==2] return(list( y= y,poped.db =poped.db )) } poped.db <- create.poped.database( ff_fun=ff, fError_fun=feps, fg_fun=sfg, groupsize=20, m=3, bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9, E0=1120,IMAX=0.807,IC50=0.0993), notfixed_bpop=c(1,1,1,0,1,1,1), d=c(V=0.09,KA=0.09,CL=0.25^2,E0=0.09), sigma=c(0.04,5e-6,0.09,100), notfixed_sigma=c(0,0,0,0), xt=c( 1,2,8,240,240,1,2,8,240,240), minxt=c(0,0,0,240,240,0,0,0,240,240), maxxt=c(10,10,10,248,248,10,10,10,248,248), discrete_xt = list(0:248), G_xt=c(1,2,3,4,5,1,2,3,4,5), bUseGrouped_xt=1, model_switch=c(1,1,1,1,1,2,2,2,2,2), a=list(c(DOSE=20,TAU=24),c(DOSE=40, TAU=24),c(DOSE=0, TAU=24)), maxa=c(DOSE=200,TAU=40), mina=c(DOSE=0,TAU=2), ourzero=0) ## create plot of model and design plot_model_prediction(poped.db,facet_scales="free", model.names = c("PK","PD")) ## create plot of model with variability by ## computing the expected variance (using an FO approximation) ## and then computing a prediction interval ## based on an assumption of normality ## computation is faster but less accurate ## compared to using DV=TRUE (and groupsize_sim = 500) plot_model_prediction(poped.db,facet_scales="free", model.names = c("PK","PD"), PI=TRUE, separate.groups = TRUE)
Run the graphical interface for PopED
poped_gui()
poped_gui()
Optimize a design defined in a PopED database using the objective function described in the database (or in the arguments to this function). The function works for both discrete and continuous optimization variables.
poped_optim( poped.db, opt_xt = poped.db$settings$optsw[2], opt_a = poped.db$settings$optsw[4], opt_x = poped.db$settings$optsw[3], opt_samps = poped.db$settings$optsw[1], opt_inds = poped.db$settings$optsw[5], method = c("ARS", "BFGS", "LS"), control = list(), trace = TRUE, fim.calc.type = poped.db$settings$iFIMCalculationType, ofv_calc_type = poped.db$settings$ofv_calc_type, ds_index = poped.db$parameters$ds_index, approx_type = poped.db$settings$iApproximationMethod, d_switch = poped.db$settings$d_switch, ED_samp_size = poped.db$settings$ED_samp_size, bLHS = poped.db$settings$bLHS, use_laplace = poped.db$settings$iEDCalculationType, out_file = "", parallel = F, parallel_type = NULL, num_cores = NULL, mrgsolve_model = NULL, loop_methods = ifelse(length(method) > 1, TRUE, FALSE), iter_max = 10, stop_crit_eff = 1.001, stop_crit_diff = NULL, stop_crit_rel = NULL, ofv_fun = poped.db$settings$ofv_fun, maximize = T, allow_replicates = TRUE, allow_replicates_xt = TRUE, allow_replicates_a = TRUE, ... )
poped_optim( poped.db, opt_xt = poped.db$settings$optsw[2], opt_a = poped.db$settings$optsw[4], opt_x = poped.db$settings$optsw[3], opt_samps = poped.db$settings$optsw[1], opt_inds = poped.db$settings$optsw[5], method = c("ARS", "BFGS", "LS"), control = list(), trace = TRUE, fim.calc.type = poped.db$settings$iFIMCalculationType, ofv_calc_type = poped.db$settings$ofv_calc_type, ds_index = poped.db$parameters$ds_index, approx_type = poped.db$settings$iApproximationMethod, d_switch = poped.db$settings$d_switch, ED_samp_size = poped.db$settings$ED_samp_size, bLHS = poped.db$settings$bLHS, use_laplace = poped.db$settings$iEDCalculationType, out_file = "", parallel = F, parallel_type = NULL, num_cores = NULL, mrgsolve_model = NULL, loop_methods = ifelse(length(method) > 1, TRUE, FALSE), iter_max = 10, stop_crit_eff = 1.001, stop_crit_diff = NULL, stop_crit_rel = NULL, ofv_fun = poped.db$settings$ofv_fun, maximize = T, allow_replicates = TRUE, allow_replicates_xt = TRUE, allow_replicates_a = TRUE, ... )
poped.db |
A PopED database. |
opt_xt |
Should the sample times be optimized? |
opt_a |
Should the continuous design variables be optimized? |
opt_x |
Should the discrete design variables be optimized? |
opt_samps |
Are the number of sample times per group being optimized? |
opt_inds |
Are the number of individuals per group being optimized? |
method |
A vector of optimization methods to use in a sequential
fashion. Options are |
control |
Contains control arguments for each method specified. |
trace |
Should the algorithm output results intermittently. |
fim.calc.type |
The method used for calculating the FIM. Potential values:
|
ofv_calc_type |
OFV calculation type for FIM
|
ds_index |
Ds_index is a vector set to 1 if a parameter is uninteresting, otherwise 0.
size=(1,num unfixed parameters). First unfixed bpop, then unfixed d, then unfixed docc and last unfixed sigma.
Default is the fixed effects being important, everything else not important. Used in conjunction with
|
approx_type |
Approximation method for model, 0=FO, 1=FOCE, 2=FOCEI, 3=FOI. |
d_switch |
D-family design (1) or ED-family design (0) (with or without parameter uncertainty) |
ED_samp_size |
Sample size for E-family sampling |
bLHS |
How to sample from distributions in E-family calculations. 0=Random Sampling, 1=LatinHyperCube – |
use_laplace |
Should the Laplace method be used in calculating the expectation of the OFV? |
out_file |
Save output from the optimization to a file. |
parallel |
Should we use parallel computations? |
parallel_type |
Which type of parallelization should be used?
Can be "snow" or "multicore". "snow" works on Linux-like systems & Windows. "multicore" works only on
Linux-like systems. By default this is chosen for you depending on your operating system.
See |
num_cores |
The number of cores to use in the parallelization. By default is set to the number
output from
|
mrgsolve_model |
If the computations require a mrgsolve model and you
are using the "snow" method then you need to specify the name of the model
object created by |
loop_methods |
Should the optimization methods be looped for
|
iter_max |
If line search is used then the algorithm tests if line
search (always run at the end of the optimization iteration) changes the
design in any way. If not, the algorithm stops. If yes, then a new
iteration is run unless |
stop_crit_eff |
If |
stop_crit_diff |
If |
stop_crit_rel |
If |
ofv_fun |
User defined function used to compute the objective function. The function must have a poped database object as its first argument and have "..." in its argument list. Can be referenced as a function or as a file name where the function defined in the file has the same name as the file. e.g. "cost.txt" has a function named "cost" in it. |
maximize |
Should the objective function be maximized or minimized? |
allow_replicates |
Should the algorithm allow optimized design components to have the same value? If FALSE then
all discrete optimizations will not allow replicates within variable types
(equivalent to |
allow_replicates_xt |
Should the algorithm allow optimized |
allow_replicates_a |
Should the algorithm allow optimized |
... |
arguments passed to other functions. |
This function takes information from the PopED database supplied as an argument. The PopED database supplies information about the the model, parameters, design and methods to use. Some of the arguments coming from the PopED database can be overwritten; if they are supplied then they are used instead of the arguments from the PopED database.
If more than one optimization method is
specified then the methods are run in series. If loop_methods=TRUE
then the series of optimization methods will be run for iter_max
iterations, or until the efficiency of the design after the current series
(compared to the start of the series) is less than stop_crit_eff
.
M. Foracchia, A.C. Hooker, P. Vicini and A. Ruggeri, "PopED, a software fir optimal experimental design in population kinetics", Computer Methods and Programs in Biomedicine, 74, 2004.
J. Nyberg, S. Ueckert, E.A. Stroemberg, S. Hennig, M.O. Karlsson and A.C. Hooker, "PopED: An extended, parallelized, nonlinear mixed effects models optimal design tool", Computer Methods and Programs in Biomedicine, 108, 2012.
Other Optimize:
Doptim()
,
LEDoptim()
,
RS_opt()
,
a_line_search()
,
bfgsb_min()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### ############## # D-family Optimization ############## # below are a number of ways to optimize the problem # ARS+BFGS+LS optimization of dose # optimization with just a few iterations # only to check that things are working out_1 <- poped_optim(poped.db,opt_a =TRUE, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 1) # cost function # PRED at 120 hours crit_fcn <- function(poped.db,...){ pred_df <- model_prediction(poped.db) return(pred_df[pred_df$Time==120,"PRED"]) } # maximize cost function out_2 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 2) # minimize the cost function out_3 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 2, maximize = FALSE, evaluate_fim = FALSE) ## Not run: # RS+BFGS+LS optimization of sample times # (longer run time than above but more likely to reach a maximum) output <- poped_optim(poped.db,opt_xt=T,parallel = TRUE) get_rse(output$FIM,output$poped.db) plot_model_prediction(output$poped.db) # optimization with only integer times allowed poped.db.2 <- poped.db poped.db.2$design_space$xt_space <- matrix(list(seq(1,120)),1,8) output_2 <- poped_optim(poped.db.2,opt_xt=T,parallel = TRUE) get_rse(output_2$FIM,output_2$poped.db) plot_model_prediction(output_2$poped.db) # Examine efficiency of sampling windows plot_efficiency_of_windows(output_2$poped.db,xt_windows=0.5) plot_efficiency_of_windows(output_2$poped.db,xt_windows=1) # Adaptive Random Search (ARS, just a few samples here) rs.output <- poped_optim(poped.db,opt_xt=T,method = "ARS", control = list(ARS=list(iter=5))) get_rse(rs.output$FIM,rs.output$poped.db) # line search, DOSE and sample time optimization ls.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "LS", control = list(LS=list(line_length=5))) # Adaptive random search, # DOSE and sample time optimization ars.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "ARS", control = list(ARS=list(iter=5))) # BFGS gradient search from the stats::optim() function, # DOSE and sample time optimization bfgs.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "BFGS", control = list(BFGS=list(maxit=5))) # genetic algorithm from the GA::ga() function, # DOSE and sample time optimization ga.output <- poped_optim(poped.db,opt_xt=T,opt_a=F,method = "GA",parallel=T) # cost function with GA # maximize out_2 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, parallel = T, method=c("GA")) # cost function with GA # minimize out_2 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, parallel = T, method=c("GA"), iter_max = 1, maximize = F, evaluate_fim = F) # optimize distribution of individuals in 3 groups poped_db_2 <- create.poped.database( ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, m=3, xt=list(c( 0.5,1,2,6,8),c(36,72,120), c(10,12,14,16,18,20,22,24)), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) opt_xt_inds <- poped_optim(poped_db_2, opt_a =TRUE, opt_inds = TRUE, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 1) ############## # E-family Optimization ############## # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database( ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) # E_ln(D) optimization using Random search (just a few samples here) output <- poped_optim(poped.db,opt_xt=TRUE,opt_a=TRUE,d_switch=0, method = c("ARS","LS"), control = list(ARS=list(iter=2), LS=list(line_length=2)), iter_max = 1) get_rse(output$FIM,output$poped.db) # ED with laplace approximation, # optimization using Random search (just a few iterations here) ars.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "ARS", d_switch=0,use_laplace=TRUE,#laplace.fim=TRUE, parallel=T, control = list(ARS=list(iter=5))) ## End(Not run)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### ############## # D-family Optimization ############## # below are a number of ways to optimize the problem # ARS+BFGS+LS optimization of dose # optimization with just a few iterations # only to check that things are working out_1 <- poped_optim(poped.db,opt_a =TRUE, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 1) # cost function # PRED at 120 hours crit_fcn <- function(poped.db,...){ pred_df <- model_prediction(poped.db) return(pred_df[pred_df$Time==120,"PRED"]) } # maximize cost function out_2 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 2) # minimize the cost function out_3 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 2, maximize = FALSE, evaluate_fim = FALSE) ## Not run: # RS+BFGS+LS optimization of sample times # (longer run time than above but more likely to reach a maximum) output <- poped_optim(poped.db,opt_xt=T,parallel = TRUE) get_rse(output$FIM,output$poped.db) plot_model_prediction(output$poped.db) # optimization with only integer times allowed poped.db.2 <- poped.db poped.db.2$design_space$xt_space <- matrix(list(seq(1,120)),1,8) output_2 <- poped_optim(poped.db.2,opt_xt=T,parallel = TRUE) get_rse(output_2$FIM,output_2$poped.db) plot_model_prediction(output_2$poped.db) # Examine efficiency of sampling windows plot_efficiency_of_windows(output_2$poped.db,xt_windows=0.5) plot_efficiency_of_windows(output_2$poped.db,xt_windows=1) # Adaptive Random Search (ARS, just a few samples here) rs.output <- poped_optim(poped.db,opt_xt=T,method = "ARS", control = list(ARS=list(iter=5))) get_rse(rs.output$FIM,rs.output$poped.db) # line search, DOSE and sample time optimization ls.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "LS", control = list(LS=list(line_length=5))) # Adaptive random search, # DOSE and sample time optimization ars.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "ARS", control = list(ARS=list(iter=5))) # BFGS gradient search from the stats::optim() function, # DOSE and sample time optimization bfgs.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "BFGS", control = list(BFGS=list(maxit=5))) # genetic algorithm from the GA::ga() function, # DOSE and sample time optimization ga.output <- poped_optim(poped.db,opt_xt=T,opt_a=F,method = "GA",parallel=T) # cost function with GA # maximize out_2 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, parallel = T, method=c("GA")) # cost function with GA # minimize out_2 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, parallel = T, method=c("GA"), iter_max = 1, maximize = F, evaluate_fim = F) # optimize distribution of individuals in 3 groups poped_db_2 <- create.poped.database( ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, m=3, xt=list(c( 0.5,1,2,6,8),c(36,72,120), c(10,12,14,16,18,20,22,24)), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) opt_xt_inds <- poped_optim(poped_db_2, opt_a =TRUE, opt_inds = TRUE, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 1) ############## # E-family Optimization ############## # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database( ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) # E_ln(D) optimization using Random search (just a few samples here) output <- poped_optim(poped.db,opt_xt=TRUE,opt_a=TRUE,d_switch=0, method = c("ARS","LS"), control = list(ARS=list(iter=2), LS=list(line_length=2)), iter_max = 1) get_rse(output$FIM,output$poped.db) # ED with laplace approximation, # optimization using Random search (just a few iterations here) ars.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "ARS", d_switch=0,use_laplace=TRUE,#laplace.fim=TRUE, parallel=T, control = list(ARS=list(iter=5))) ## End(Not run)
This function is an older version of poped_optim
. Please use poped_optim
unless you have a specific reason to use this function instead.
poped_optimize( poped.db, ni = NULL, xt = NULL, model_switch = NULL, x = NULL, a = NULL, bpop = NULL, d = NULL, maxxt = NULL, minxt = NULL, maxa = NULL, mina = NULL, fmf = 0, dmf = 0, trflag = TRUE, opt_xt = poped.db$settings$optsw[2], opt_a = poped.db$settings$optsw[4], opt_x = poped.db$settings$optsw[3], opt_samps = poped.db$settings$optsw[1], opt_inds = poped.db$settings$optsw[5], cfaxt = poped.db$settings$cfaxt, cfaa = poped.db$settings$cfaa, rsit = poped.db$settings$rsit, rsit_output = poped.db$settings$rsit_output, fim.calc.type = poped.db$settings$iFIMCalculationType, ofv_calc_type = poped.db$settings$ofv_calc_type, approx_type = poped.db$settings$iApproximationMethod, bUseExchangeAlgorithm = poped.db$settings$bUseExchangeAlgorithm, iter = 1, d_switch = poped.db$settings$d_switch, ED_samp_size = poped.db$settings$ED_samp_size, bLHS = poped.db$settings$bLHS, use_laplace = poped.db$settings$iEDCalculationType, ... )
poped_optimize( poped.db, ni = NULL, xt = NULL, model_switch = NULL, x = NULL, a = NULL, bpop = NULL, d = NULL, maxxt = NULL, minxt = NULL, maxa = NULL, mina = NULL, fmf = 0, dmf = 0, trflag = TRUE, opt_xt = poped.db$settings$optsw[2], opt_a = poped.db$settings$optsw[4], opt_x = poped.db$settings$optsw[3], opt_samps = poped.db$settings$optsw[1], opt_inds = poped.db$settings$optsw[5], cfaxt = poped.db$settings$cfaxt, cfaa = poped.db$settings$cfaa, rsit = poped.db$settings$rsit, rsit_output = poped.db$settings$rsit_output, fim.calc.type = poped.db$settings$iFIMCalculationType, ofv_calc_type = poped.db$settings$ofv_calc_type, approx_type = poped.db$settings$iApproximationMethod, bUseExchangeAlgorithm = poped.db$settings$bUseExchangeAlgorithm, iter = 1, d_switch = poped.db$settings$d_switch, ED_samp_size = poped.db$settings$ED_samp_size, bLHS = poped.db$settings$bLHS, use_laplace = poped.db$settings$iEDCalculationType, ... )
poped.db |
A PopED database. |
ni |
A vector of the number of samples in each group. |
xt |
A matrix of sample times. Each row is a vector of sample times for a group. |
model_switch |
A matrix that is the same size as xt, specifying which model each sample belongs to. |
x |
A matrix for the discrete design variables. Each row is a group. |
a |
A matrix of covariates. Each row is a group. |
bpop |
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
Can also just supply the parameter values as a vector |
d |
Matrix defining the diagonals of the IIV (same logic as for the fixed effects
matrix bpop to define uncertainty). One can also just supply the parameter values as a |
maxxt |
Matrix or single value defining the maximum value for each xt sample. If a single value is supplied then all xt values are given the same maximum value. |
minxt |
Matrix or single value defining the minimum value for each xt sample. If a single value is supplied then all xt values are given the same minimum value |
maxa |
Vector defining the max value for each covariate. If a single value is supplied then all a values are given the same max value |
mina |
Vector defining the min value for each covariate. If a single value is supplied then all a values are given the same max value |
fmf |
The initial value of the FIM. If set to zero then it is computed. |
dmf |
The initial OFV. If set to zero then it is computed. |
trflag |
Should the optimization be output to the screen and to a file? |
opt_xt |
Should the sample times be optimized? |
opt_a |
Should the continuous design variables be optimized? |
opt_x |
Should the discrete design variables be optimized? |
opt_samps |
Are the number of sample times per group being optimized? |
opt_inds |
Are the number of individuals per group being optimized? |
cfaxt |
First step factor for sample times |
cfaa |
Stochastic Gradient search first step factor for covariates |
rsit |
Number of Random search iterations |
rsit_output |
Number of iterations in random search between screen output |
fim.calc.type |
The method used for calculating the FIM. Potential values:
|
ofv_calc_type |
OFV calculation type for FIM
|
approx_type |
Approximation method for model, 0=FO, 1=FOCE, 2=FOCEI, 3=FOI. |
bUseExchangeAlgorithm |
Use Exchange algorithm (1=TRUE, 0=FALSE) |
iter |
The number of iterations entered into the |
d_switch |
D-family design (1) or ED-family design (0) (with or without parameter uncertainty) |
ED_samp_size |
Sample size for E-family sampling |
bLHS |
How to sample from distributions in E-family calculations. 0=Random Sampling, 1=LatinHyperCube – |
use_laplace |
Should the Laplace method be used in calculating the expectation of the OFV? |
... |
arguments passed to other functions. See |
This function optimized the objective function. The function works for both discrete and continuous optimization variables. This function takes information from the PopED database supplied as an argument. The PopED database supplies information about the the model, parameters, design and methods to use. Some of the arguments coming from the PopED database can be overwritten; if they are supplied then they are used instead of the arguments from the PopED database.
M. Foracchia, A.C. Hooker, P. Vicini and A. Ruggeri, "PopED, a software fir optimal experimental design in population kinetics", Computer Methods and Programs in Biomedicine, 74, 2004.
J. Nyberg, S. Ueckert, E.A. Stroemberg, S. Hennig, M.O. Karlsson and A.C. Hooker, "PopED: An extended, parallelized, nonlinear mixed effects models optimal design tool", Computer Methods and Programs in Biomedicine, 108, 2012.
Other Optimize:
Doptim()
,
LEDoptim()
,
RS_opt()
,
a_line_search()
,
bfgsb_min()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### ############## # D-family Optimization ############## # below are a number of ways to optimize the problem # RS+SG+LS optimization of DOSE and sample times # optimization with just a few iterations # only to check that things are working out_1 <- poped_optimize(poped.db,opt_a=TRUE,opt_xt=TRUE, rsit=2,sgit=2,ls_step_size=2, iter_max=1,out_file = "") ## Not run: # RS+SG+LS optimization of sample times # (longer run time than above but more likely to reach a maximum) output <- poped_optimize(poped.db,opt_xt=T) get_rse(output$fmf,output$poped.db) plot_model_prediction(output$poped.db) # MFEA optimization with only integer times allowed mfea.output <- poped_optimize(poped.db,opt_xt=1, bUseExchangeAlgorithm=1, EAStepSize=1) get_rse(mfea.output$fmf,mfea.output$poped.db) plot_model_prediction(mfea.output$poped.db) # Examine efficiency of sampling windows plot_efficiency_of_windows(mfea.output$poped.db,xt_windows=0.5) plot_efficiency_of_windows(mfea.output$poped.db,xt_windows=1) # Random search (just a few samples here) rs.output <- poped_optimize(poped.db,opt_xt=1,opt_a=1,rsit=20, bUseRandomSearch= 1, bUseStochasticGradient = 0, bUseBFGSMinimizer = 0, bUseLineSearch = 0) get_rse(rs.output$fmf,rs.output$poped.db) # line search, DOSE and sample time optimization ls.output <- poped_optimize(poped.db,opt_xt=1,opt_a=1, bUseRandomSearch= 0, bUseStochasticGradient = 0, bUseBFGSMinimizer = 0, bUseLineSearch = 1, ls_step_size=10) # Stochastic gradient search, DOSE and sample time optimization sg.output <- poped_optimize(poped.db,opt_xt=1,opt_a=1, bUseRandomSearch= 0, bUseStochasticGradient = 1, bUseBFGSMinimizer = 0, bUseLineSearch = 0, sgit=20) # BFGS search, DOSE and sample time optimization bfgs.output <- poped_optimize(poped.db,opt_xt=1,opt_a=1, bUseRandomSearch= 0, bUseStochasticGradient = 0, bUseBFGSMinimizer = 1, bUseLineSearch = 0) ############## # E-family Optimization ############## # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database( ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) # ED optimization using Random search (just a few samples here) output <- poped_optimize(poped.db,opt_xt=1,opt_a=1,rsit=10,d_switch=0) get_rse(output$fmf,output$poped.db) # ED with laplace approximation, # optimization using Random search (just a few samples here) output <- poped_optimize(poped.db,opt_xt=1,opt_a=1,rsit=10, d_switch=0,use_laplace=TRUE,laplace.fim=TRUE) get_rse(output$fmf,output$poped.db) ## End(Not run)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### ############## # D-family Optimization ############## # below are a number of ways to optimize the problem # RS+SG+LS optimization of DOSE and sample times # optimization with just a few iterations # only to check that things are working out_1 <- poped_optimize(poped.db,opt_a=TRUE,opt_xt=TRUE, rsit=2,sgit=2,ls_step_size=2, iter_max=1,out_file = "") ## Not run: # RS+SG+LS optimization of sample times # (longer run time than above but more likely to reach a maximum) output <- poped_optimize(poped.db,opt_xt=T) get_rse(output$fmf,output$poped.db) plot_model_prediction(output$poped.db) # MFEA optimization with only integer times allowed mfea.output <- poped_optimize(poped.db,opt_xt=1, bUseExchangeAlgorithm=1, EAStepSize=1) get_rse(mfea.output$fmf,mfea.output$poped.db) plot_model_prediction(mfea.output$poped.db) # Examine efficiency of sampling windows plot_efficiency_of_windows(mfea.output$poped.db,xt_windows=0.5) plot_efficiency_of_windows(mfea.output$poped.db,xt_windows=1) # Random search (just a few samples here) rs.output <- poped_optimize(poped.db,opt_xt=1,opt_a=1,rsit=20, bUseRandomSearch= 1, bUseStochasticGradient = 0, bUseBFGSMinimizer = 0, bUseLineSearch = 0) get_rse(rs.output$fmf,rs.output$poped.db) # line search, DOSE and sample time optimization ls.output <- poped_optimize(poped.db,opt_xt=1,opt_a=1, bUseRandomSearch= 0, bUseStochasticGradient = 0, bUseBFGSMinimizer = 0, bUseLineSearch = 1, ls_step_size=10) # Stochastic gradient search, DOSE and sample time optimization sg.output <- poped_optimize(poped.db,opt_xt=1,opt_a=1, bUseRandomSearch= 0, bUseStochasticGradient = 1, bUseBFGSMinimizer = 0, bUseLineSearch = 0, sgit=20) # BFGS search, DOSE and sample time optimization bfgs.output <- poped_optimize(poped.db,opt_xt=1,opt_a=1, bUseRandomSearch= 0, bUseStochasticGradient = 0, bUseBFGSMinimizer = 1, bUseLineSearch = 0) ############## # E-family Optimization ############## # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database( ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) # ED optimization using Random search (just a few samples here) output <- poped_optimize(poped.db,opt_xt=1,opt_a=1,rsit=10,d_switch=0) get_rse(output$fmf,output$poped.db) # ED with laplace approximation, # optimization using Random search (just a few samples here) output <- poped_optimize(poped.db,opt_xt=1,opt_a=1,rsit=10, d_switch=0,use_laplace=TRUE,laplace.fim=TRUE) get_rse(output$fmf,output$poped.db) ## End(Not run)
Optimize the objective function using an adaptive random search algorithm.
Optimization can be performed for both D-family and E-family designs.
The function works for both discrete and continuous optimization variables.
This function takes information from the PopED database supplied as an argument.
The PopED database supplies information about the the model, parameters, design and methods to use.
Some of the arguments coming from the PopED database can be overwritten;
by default these arguments are NULL
in the
function, if they are supplied then they are used instead of the arguments from the PopED database.
RS_opt( poped.db, ni = NULL, xt = NULL, model_switch = NULL, x = NULL, a = NULL, bpopdescr = NULL, ddescr = NULL, maxxt = NULL, minxt = NULL, maxa = NULL, mina = NULL, fmf = 0, dmf = 0, trflag = TRUE, opt_xt = poped.db$settings$optsw[2], opt_a = poped.db$settings$optsw[4], opt_x = poped.db$settings$optsw[3], cfaxt = poped.db$settings$cfaxt, cfaa = poped.db$settings$cfaa, rsit = poped.db$settings$rsit, rsit_output = poped.db$settings$rsit_output, fim.calc.type = poped.db$settings$iFIMCalculationType, approx_type = poped.db$settings$iApproximationMethod, iter = NULL, d_switch = poped.db$settings$d_switch, use_laplace = poped.db$settings$iEDCalculationType, laplace.fim = FALSE, header_flag = TRUE, footer_flag = TRUE, out_file = NULL, compute_inv = TRUE, ... )
RS_opt( poped.db, ni = NULL, xt = NULL, model_switch = NULL, x = NULL, a = NULL, bpopdescr = NULL, ddescr = NULL, maxxt = NULL, minxt = NULL, maxa = NULL, mina = NULL, fmf = 0, dmf = 0, trflag = TRUE, opt_xt = poped.db$settings$optsw[2], opt_a = poped.db$settings$optsw[4], opt_x = poped.db$settings$optsw[3], cfaxt = poped.db$settings$cfaxt, cfaa = poped.db$settings$cfaa, rsit = poped.db$settings$rsit, rsit_output = poped.db$settings$rsit_output, fim.calc.type = poped.db$settings$iFIMCalculationType, approx_type = poped.db$settings$iApproximationMethod, iter = NULL, d_switch = poped.db$settings$d_switch, use_laplace = poped.db$settings$iEDCalculationType, laplace.fim = FALSE, header_flag = TRUE, footer_flag = TRUE, out_file = NULL, compute_inv = TRUE, ... )
poped.db |
A PopED database. |
ni |
A vector of the number of samples in each group. |
xt |
A matrix of sample times. Each row is a vector of sample times for a group. |
model_switch |
A matrix that is the same size as xt, specifying which model each sample belongs to. |
x |
A matrix for the discrete design variables. Each row is a group. |
a |
A matrix of covariates. Each row is a group. |
bpopdescr |
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
|
ddescr |
Matrix defining the diagonals of the IIV (same logic as for
the |
maxxt |
Matrix or single value defining the maximum value for each xt sample. If a single value is supplied then all xt values are given the same maximum value. |
minxt |
Matrix or single value defining the minimum value for each xt sample. If a single value is supplied then all xt values are given the same minimum value |
maxa |
Vector defining the max value for each covariate. If a single value is supplied then all a values are given the same max value |
mina |
Vector defining the min value for each covariate. If a single value is supplied then all a values are given the same max value |
fmf |
The initial value of the FIM. If set to zero then it is computed. |
dmf |
The initial OFV. If set to zero then it is computed. |
trflag |
Should the optimization be output to the screen and to a file? |
opt_xt |
Should the sample times be optimized? |
opt_a |
Should the continuous design variables be optimized? |
opt_x |
Should the discrete design variables be optimized? |
cfaxt |
First step factor for sample times |
cfaa |
Stochastic Gradient search first step factor for covariates |
rsit |
Number of Random search iterations |
rsit_output |
Number of iterations in random search between screen output |
fim.calc.type |
The method used for calculating the FIM. Potential values:
|
approx_type |
Approximation method for model, 0=FO, 1=FOCE, 2=FOCEI, 3=FOI. |
iter |
The number of iterations entered into the |
d_switch |
D-family design (1) or ED-family design (0) (with or without parameter uncertainty) |
use_laplace |
Should the Laplace method be used in calculating the expectation of the OFV? |
laplace.fim |
Should an E(FIM) be calculated when computing the Laplace approximated E(OFV). Typically the FIM does not need to be computed and, if desired, this calculation is done using the standard MC integration technique, so can be slow. |
header_flag |
Should the header text be printed out? |
footer_flag |
Should the footer text be printed out? |
out_file |
Which file should the output be directed to? A string, a file handle using
|
compute_inv |
should the inverse of the FIM be used to compute expected RSE values? Often not needed except for diagnostic purposes. |
... |
arguments passed to |
M. Foracchia, A.C. Hooker, P. Vicini and A. Ruggeri, "PopED, a software fir optimal experimental design in population kinetics", Computer Methods and Programs in Biomedicine, 74, 2004.
J. Nyberg, S. Ueckert, E.A. Stroemberg, S. Hennig, M.O. Karlsson and A.C. Hooker, "PopED: An extended, parallelized, nonlinear mixed effects models optimal design tool", Computer Methods and Programs in Biomedicine, 108, 2012.
Other Optimize:
Doptim()
,
LEDoptim()
,
a_line_search()
,
bfgsb_min()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samoples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) ############# END ################### ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### # Just a few iterations, optimize on DOSE and sample times using the full FIM out_1 <- RS_opt(poped.db,opt_xt=1,opt_a=1,rsit=3,fim.calc.type=0, out_file = "") ## Not run: RS_opt(poped.db) RS_opt(poped.db,opt_xt=TRUE,rsit=100,compute_inv=F) RS_opt(poped.db,opt_xt=TRUE,rsit=20,d_switch=0) RS_opt(poped.db,opt_xt=TRUE,rsit=10,d_switch=0,use_laplace=T) RS_opt(poped.db,opt_xt=TRUE,rsit=10,d_switch=0,use_laplace=T,laplace.fim=T) ## Different headers and footers of output RS_opt(poped.db,opt_xt=TRUE,rsit=10,out_file="foo.txt") output <- RS_opt(poped.db,opt_xt=TRUE,rsit=100,trflag=FALSE) RS_opt(poped.db,opt_xt=TRUE,rsit=10,out_file="") RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE) RS_opt(poped.db,opt_xt=TRUE,rsit=10,footer_flag=FALSE) RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE,footer_flag=FALSE) RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE,footer_flag=FALSE,out_file="foo.txt") RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE,footer_flag=FALSE,out_file="") ## End(Not run)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samoples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) ############# END ################### ## Create PopED database ## (warfarin model for optimization ## with parameter uncertainty) ##################################### # Just a few iterations, optimize on DOSE and sample times using the full FIM out_1 <- RS_opt(poped.db,opt_xt=1,opt_a=1,rsit=3,fim.calc.type=0, out_file = "") ## Not run: RS_opt(poped.db) RS_opt(poped.db,opt_xt=TRUE,rsit=100,compute_inv=F) RS_opt(poped.db,opt_xt=TRUE,rsit=20,d_switch=0) RS_opt(poped.db,opt_xt=TRUE,rsit=10,d_switch=0,use_laplace=T) RS_opt(poped.db,opt_xt=TRUE,rsit=10,d_switch=0,use_laplace=T,laplace.fim=T) ## Different headers and footers of output RS_opt(poped.db,opt_xt=TRUE,rsit=10,out_file="foo.txt") output <- RS_opt(poped.db,opt_xt=TRUE,rsit=100,trflag=FALSE) RS_opt(poped.db,opt_xt=TRUE,rsit=10,out_file="") RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE) RS_opt(poped.db,opt_xt=TRUE,rsit=10,footer_flag=FALSE) RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE,footer_flag=FALSE) RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE,footer_flag=FALSE,out_file="foo.txt") RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE,footer_flag=FALSE,out_file="") ## End(Not run)
Predict shrinkage of empirical Bayes estimates (EBEs) in a population model
shrinkage(poped.db, use_mc = FALSE, num_sim_ids = 1000, use_purrr = FALSE)
shrinkage(poped.db, use_mc = FALSE, num_sim_ids = 1000, use_purrr = FALSE)
poped.db |
A PopED database |
use_mc |
Should the calculation be based on monte-carlo simulations. If not then then a first order approximation is used |
num_sim_ids |
If |
use_purrr |
If |
The shrinkage computed in variance units, standard deviation units and the relative standard errors of the EBEs.
Combes, F. P., Retout, S., Frey, N., & Mentre, F. (2013). Prediction of shrinkage of individual parameters using the Bayesian information matrix in non-linear mixed effect models with evaluation in pharmacokinetics. Pharmaceutical Research, 30(9), 2355-67. doi:10.1007/s11095-013-1079-3.
Hennig, S., Nyberg, J., Fanta, S., Backman, J. T., Hoppu, K., Hooker, A. C., & Karlsson, M. O. (2012). Application of the optimal design approach to improve a pretransplant drug dose finding design for ciclosporin. Journal of Clinical Pharmacology, 52(3), 347-360. doi:10.1177/0091270010397731.
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### shrinkage(poped.db)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin example) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define model, parameters, initial design poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), a=c(DOSE=70)) ############# END ################### ## Create PopED database ## (warfarin example) ##################################### shrinkage(poped.db)
Function written to match MATLAB's size function
size(obj, dimension.index = NULL)
size(obj, dimension.index = NULL)
obj |
An object you want to know the various dimensions of. Typically a matrix. |
dimension.index |
Which dimension you are interested in. |
The dimensions of the object or specific dimension you are interested in.
Other MATLAB:
cell()
,
diag_matlab()
,
feval()
,
fileparts()
,
isempty()
,
ones()
,
rand()
,
randn()
,
tic()
,
toc()
,
zeros()
size(c(2,3,4,5,6)) size(10) size(zeros(4,7))
size(c(2,3,4,5,6)) size(10) size(zeros(4,7))
This tool chooses the type of parallelization process to use based on the computer OS being used. For windows the default is "snow" and for Linux-like systems the default is "multicore"
start_parallel( parallel = TRUE, num_cores = NULL, parallel_type = NULL, seed = NULL, dlls = NULL, mrgsolve_model = NULL, ... )
start_parallel( parallel = TRUE, num_cores = NULL, parallel_type = NULL, seed = NULL, dlls = NULL, mrgsolve_model = NULL, ... )
parallel |
Should the parallel functionality start up? |
num_cores |
How many cores to use. Default is
|
parallel_type |
Which type of parallelization should be used? Can be "snow" or "multicore". "snow" works on Linux-like systems & Windows. "multicore" works only on Linux-like systems. By default this is chosen for you depending on your operating system. |
seed |
The random seed to use. |
dlls |
If the computations require compiled code (DLL's) and you are
using the "snow" method then you need to specify the name of the DLL's without
the extension as a text vector |
mrgsolve_model |
If the computations require a mrgsolve model and you
are using the "snow" method" then you need to specify the name of the model
object created by |
... |
Arguments passed to |
An atomic vector (TRUE or FALSE) with two attributes: "type" and "cores".
Display a summary of output from poped_optim
## S3 method for class 'poped_optim' summary(object, ...)
## S3 method for class 'poped_optim' summary(object, ...)
object |
An object returned from |
... |
Additional arguments. Passed to |
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### ############## # D-family Optimization ############## # ARS+BFGS+LS optimization of dose # optimization with just a few iterations # only to check that things are working out_1 <- poped_optim(poped.db,opt_a =TRUE, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 1) summary(out_1)
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL ## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### ############## # D-family Optimization ############## # ARS+BFGS+LS optimization of dose # optimization with just a few iterations # only to check that things are working out_1 <- poped_optim(poped.db,opt_a =TRUE, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 1) summary(out_1)
Function to start a timer. Stop with toc().
tic(gcFirst = FALSE, name = ".poped_savedTime")
tic(gcFirst = FALSE, name = ".poped_savedTime")
gcFirst |
Perform garbage collection? |
name |
The saved name of the time object. |
This is a modified version of the same function in the matlab R-package.
Other MATLAB:
cell()
,
diag_matlab()
,
feval()
,
fileparts()
,
isempty()
,
ones()
,
rand()
,
randn()
,
size()
,
toc()
,
zeros()
tic() toc() tic(name="foo") toc() tic() toc() toc() tic() toc(name="foo")
tic() toc() tic(name="foo") toc() tic() toc() toc() tic() toc(name="foo")
Function to stop a timer. Start with tic().
toc(echo = TRUE, name = ".poped_savedTime")
toc(echo = TRUE, name = ".poped_savedTime")
echo |
Print time to screen? |
name |
The saved name of the time object. |
This is a modified version of the same function in the matlab R-package.
Other MATLAB:
cell()
,
diag_matlab()
,
feval()
,
fileparts()
,
isempty()
,
ones()
,
rand()
,
randn()
,
size()
,
tic()
,
zeros()
tic() toc() tic(name="foo") toc() tic() toc() toc() tic() toc(name="foo")
tic() toc() tic(name="foo") toc() tic() toc() toc() tic() toc(name="foo")
Create a matrix of zeros of size (dim1 x dim2).
zeros(dim1, dim2 = NULL)
zeros(dim1, dim2 = NULL)
dim1 |
The dimension of the matrix (if square) or the number of rows. |
dim2 |
The number of columns |
A matrix of zeros.
Other MATLAB:
cell()
,
diag_matlab()
,
feval()
,
fileparts()
,
isempty()
,
ones()
,
rand()
,
randn()
,
size()
,
tic()
,
toc()
zeros(3) zeros(0,3) zeros(4,7) zeros(1,4)
zeros(3) zeros(0,3) zeros(4,7) zeros(1,4)